設(shè)f(x)=和g(x)= (2+x-6x2)的定義域依次為M和N,則M∩N(N)等于(    )

A.[-]                                   B.(-1,1)

C.(-)                                      D.(-1,-]∩[,1)

D

解析:由1-x2>0知-1<x<1即M=(-1,1),由2+x-6x2>0知-<x<,即N=(-,),∴M∩(N)=(-1,-)∪[,1].

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導函數(shù)為f′(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a),設(shè)函數(shù)f(x)=lnx+
b+2x+1
(x>1)
,其中b為實數(shù).
(1)①求證:函數(shù)f(x)具有性質(zhì)P(b);
②求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

10、設(shè)f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和((f•g)(x)對任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),則下列等式恒成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設(shè)f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和((f•g)(x)對任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),則下列等式恒成立的是


  1. A.
    ((f°g)•h)(x)=((f•h)°(g•h))(x)
  2. B.
    ((f•g)°h)(x)=((f°h)•(g°h))(x)
  3. C.
    ((f°g)°h)(x)=((f°h)°(g°h))(x)
  4. D.
    ((f•g)•h)(x)=((f•h)•(g•h))(x)

查看答案和解析>>

科目:高中數(shù)學 來源:廣東 題型:單選題

設(shè)f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和((f•g)(x)對任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),則下列等式恒成立的是(  )
A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=logax和g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R)的圖像在x=2處的切線互相平行.

(Ⅰ)求t的值;

(Ⅱ)設(shè)F(x)=g(x)-f(x),當x∈[1,4]時,F(xiàn)(x)≥2恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案