【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國(guó)著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動(dòng),在1859年,德國(guó)數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過(guò)這個(gè)問(wèn)題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論(素?cái)?shù)即質(zhì)數(shù),).根據(jù)歐拉得出的結(jié)論,如下流程圖中若輸入的值為,則輸出的值應(yīng)屬于區(qū)間( )

A.B.C.D.

【答案】B

【解析】

由流程圖可知其作用為統(tǒng)計(jì)以?xún)?nèi)素?cái)?shù)的個(gè)數(shù),將代入可求得近似值,從而得到結(jié)果.

該流程圖是統(tǒng)計(jì)以?xún)?nèi)素?cái)?shù)的個(gè)數(shù)

由題可知小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為

以?xún)?nèi)的素?cái)?shù)個(gè)數(shù)為

本題正確選項(xiàng):

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在極坐標(biāo)系中,,弧,,所在圓的圓心分別為,,,曲線(xiàn)是弧,曲線(xiàn)是弧,曲線(xiàn)是弧

1)寫(xiě)出曲線(xiàn),的極坐標(biāo)方程;

2)曲線(xiàn),,構(gòu)成,若曲線(xiàn)的極坐標(biāo)方程為,,),寫(xiě)出曲線(xiàn)與曲線(xiàn)的所有公共點(diǎn)(除極點(diǎn)外)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐PABCD中,側(cè)面PAD⊥底面ABCD,∠BAD60°,△PAD是邊長(zhǎng)為2的正三角形,底面ABCD是菱形,點(diǎn)MPC的中點(diǎn).

1)求證:PA∥平面MDB;

2)求三棱錐ABDM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C).若,,,四點(diǎn)中有且僅有三點(diǎn)在橢面C上.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)O為坐標(biāo)原點(diǎn),F為橢圓C的右焦點(diǎn),過(guò)點(diǎn)F的直線(xiàn)l分別與橢圓C交于M,N兩點(diǎn),,求證:直線(xiàn),關(guān)于x軸對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線(xiàn)E的方程為x22pyp0),其焦點(diǎn)為F,過(guò)點(diǎn)M 0,4)的直線(xiàn)與拋物線(xiàn)相交于P、Q兩點(diǎn)且OPQ為以O為直角頂點(diǎn)的直角三角形.

(Ⅰ)求E的方程;

(Ⅱ)設(shè)點(diǎn)N為曲線(xiàn)E上的任意一點(diǎn),證明:以FN為直徑的圓與x軸相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為射線(xiàn)交曲線(xiàn)C于點(diǎn)A,傾斜角為α的直線(xiàn)l過(guò)線(xiàn)段OA的中點(diǎn)B且與曲線(xiàn)C交于P、Q兩點(diǎn).

(1)求曲線(xiàn)C的直角坐標(biāo)方程及直線(xiàn)l的參數(shù)方程;

(2)當(dāng)直線(xiàn)l傾斜角α為何值時(shí), |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)F1作圓x2+y2a2的切線(xiàn)交雙曲線(xiàn)右支于點(diǎn)M,若tanF1MF22,又e為雙曲線(xiàn)的離心率,則e2的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,曲線(xiàn)上任意一點(diǎn)到的距離等于該點(diǎn)到直線(xiàn)的距離.

(Ⅰ)求及曲線(xiàn)的方程;

(Ⅱ)若直線(xiàn)與橢圓只有一個(gè)交點(diǎn),與曲線(xiàn)交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)棱底面,底面三角形是正三角形,EBC中點(diǎn),則下列敘述正確的是(

A.是異面直線(xiàn)B.平面

C.AE,為異面直線(xiàn),且D.平面

查看答案和解析>>

同步練習(xí)冊(cè)答案