已知函數(shù)
(1)若上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求證:當(dāng)時(shí),

(1) ;(2)分析法。

解析試題分析: 
,要證,即證,
, ,
, ,   
考點(diǎn):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式。
點(diǎn)評(píng):中檔題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,證明不等式,往往通過構(gòu)造函數(shù),確定函數(shù)的最值,達(dá)到證明目的。本題利用分析法,將問題做了進(jìn)一步的轉(zhuǎn)化,實(shí)現(xiàn)了化難為易。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在x=與x =l時(shí)都取得極值
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對(duì)x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)設(shè),試比較的大小;
(2)是否存在常數(shù),使得對(duì)任意大于的自然數(shù)都成立?若存在,試求出的值并證明你的結(jié)論;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.(其中為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線處的切線與直線垂直,求的值;
(2)若對(duì)于任意實(shí)數(shù)≥0,恒成立,試確定實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線C:在點(diǎn)處的切線與軸垂直?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若p=2,求曲線處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實(shí)數(shù)p的取值范圍;
(3)設(shè)函數(shù),若在[1,e]上至少存在一點(diǎn),使得成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)的單調(diào)性;
(3)斜率為的直線與曲線交于,兩點(diǎn),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=(1+x)2-2ln (1+x).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=x2xa在[0,2]上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若x=1時(shí)取得極值,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求上的最小值;
(3)若對(duì)任意,直線都不是曲線的切線,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖像在點(diǎn)處的切線與直線平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案