在△ABC中,BC=2,B=
π
3
,當△ABC的面積等于
3
2
時,AB=( 。
A、
3
2
B、
1
2
C、1
D、
3
考點:正弦定理
專題:解三角形
分析:利用三角形面積公式列出關系式,將BC,sinB,以及已知面積代入求出AB的長即可.
解答: 解:∵在△ABC中,BC=2,B=
π
3
,△ABC的面積等于
3
2

∴S△ABC=
1
2
AB•BC•sinB=
3
2
,即
1
2
×AB×2×
3
2
=
3
2
,
解得:AB=1,
故選:C.
點評:此題考查了三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握三角形面積公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果等差數(shù)列{an}中,a4=4,那么a1+a2+…+a7=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正六邊形ABCDEF中,AB=2,點Q為BC邊的中點,點P在正六邊形ABCDEF內(nèi)(含邊界),則
AP
AQ
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“直線y=kx+b過點(1,1)”是“k=2且b=-1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-tan(
π
6
-α)•x+1在[
3
2
,+∞)上單調(diào)遞增,則α的取值范圍是( 。
A、[kπ-
π
6
,kπ+
2
3
π),(k∈Z)
B、(kπ-
2
3
π,kπ+
π
6
],(k∈Z)
C、(-
2
3
π,+∞)(k∈Z)
D、(-∞,kπ+
π
6
],(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一位生物學家記錄了一棵樹1-5年的高度,由此建立的高度高與生長年數(shù)的回歸模型為y=3.O01t-0.25用這個模型預測這棵樹第8年時的高度,則正確的敘述是( 。
A、高度一定是23.83m
B、高度在23.83m左右
C、高度在23.83m以下
D、高度在23.83m以上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

32
+
1
2
50的二項展開式中,整數(shù)項的個數(shù)是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

α=-
3
,則角α的終邊在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某設備零件的三視圖如圖所示,則這個零件的體積為( 。
A、6B、8C、3D、4

查看答案和解析>>

同步練習冊答案