【題目】如圖,在三棱錐中,,,,,,分別為線段,上的點(diǎn),且,.
(1)證明:;
(2)若,求二面角的余弦值.
【答案】(1)見證明;(2)
【解析】
(1)證明BC⊥平面SAC,即可推出SC⊥平面ABC,從而得到MN⊥平面SCM,即可證明MN⊥SM.(2)以C為原點(diǎn),以,,為軸,軸,軸的正方向建立空間直角坐標(biāo)系,求出平面SAM和平面SMN的法向量,利用空間向量的夾角的余弦,求解二面角A﹣SM﹣N的余弦值.
(1)證明:由,,且,則平面,
平面,故,又,,則平面,
平面,故.
因?yàn)?/span>,,所以,故.
又因?yàn)?/span>,所以平面.
又平面,則.
(2)解:由(1)知,,,兩兩相互垂直,
如圖是以為坐標(biāo)原點(diǎn),分別以,,為軸,軸,軸的正方向建立空間直角坐標(biāo)系,
則,,,,,
,,.
設(shè)平面的法向量為,則
,令,得.
設(shè)平面的法向量為,
則,令,則,,故.
所以,
由圖可知二面角為鈍角,
故二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·武漢六中]袋子中有四個(gè)小球,分別寫有“武、漢、軍、運(yùn)”四個(gè)字,從中任取一個(gè)小球,有放回抽取,直到取到“軍”“運(yùn)”二字就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率:利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“軍、運(yùn)、武、漢”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下16組隨機(jī)數(shù):
232 321 230 023 123 021 132 220
231 130 133 231 331 320 122 233
由此可以估計(jì),恰好第三次就停止的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在二項(xiàng)式的展開式中,
(1)若展開式中第5項(xiàng)、第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù);(最后結(jié)果用算式表達(dá),不用計(jì)算出數(shù)值)
(2)若展開式前三項(xiàng)的二項(xiàng)式系數(shù)的和等于79,求展開式中系數(shù)最大的項(xiàng).(最后結(jié)果用算式表達(dá),不用計(jì)算出數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)作為客戶端越來越為人們所青睞,通過手機(jī)實(shí)現(xiàn)衣食住行消費(fèi)已經(jīng)成為一種主要的消費(fèi)方式.在某市,隨機(jī)調(diào)查了200名顧客購物時(shí)使用手機(jī)支付的情況,得到如下的2×2列聯(lián)表,已知從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(I)根據(jù)已知條件完成2×2列聯(lián)表,并根據(jù)此資料判斷是否有99.5%的把握認(rèn)為“市場(chǎng)購物用手機(jī)支付與年齡有關(guān)”?
2×2列聯(lián)表:
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 120 | ||
不使用手機(jī)支付 | 48 | ||
合計(jì) | 200 |
(Ⅱ)現(xiàn)采用分層抽樣的方法從這200名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”抽取一個(gè)容量為10的樣本,再從中隨機(jī)抽取3人,求這三人中“使用手機(jī)支付”的人數(shù)的分布列及期望.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽.若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為各局比賽結(jié)果相互獨(dú)立.則甲在4局以內(nèi)(含4局)贏得比賽的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)與的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線
(1)寫出的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè),為與的交點(diǎn),求的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面是矩形,平面,是的中點(diǎn),,.
(1)求異面直線AE與CD所成角的大;
(2)求二面角E-AD-B大小的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com