A. | $\frac{16}{65}$ | B. | $\frac{56}{65}$ | C. | $\frac{16}{65}$或$\frac{56}{65}$ | D. | -$\frac{16}{65}$ |
分析 由條件利用同角三角函數(shù)的基本關(guān)系求得sinA、sinB的值,再利用誘導(dǎo)公式、兩角和的余弦公式求得cosC=cos[π-(A+B)]的值.
解答 解:在△ABC中,0<A<π,0<B<π,cosA=$\frac{4}{5}$,cosB=$\frac{5}{13}$,∴sinA=$\frac{3}{5}$,sinB=$\frac{12}{13}$,
所以cosC=cos[π-(A+B)]=-cos(A+B)=sinA•sinB-cosA•cosB
=$\frac{3}{5}$×$\frac{12}{13}$-$\frac{4}{5}$×$\frac{5}{13}$=$\frac{16}{65}$,
故選:A.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,誘導(dǎo)公式、兩角和的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b | B. | c<b<a | C. | ${10^a}<{({\frac{1}{3}})^b}$ | D. | $lga<{({\frac{1}{2}})^b}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=(a2x)${\;}^{\frac{1}{2}}$(a>0)與g(x)=ax(a>0) | B. | f(x)=x2+x+1與g(x)=x2+x+(2x-1)0 | ||
C. | f(x)=$\sqrt{x-2}$•$\sqrt{x+2}$與g(x)=$\sqrt{{x}^{2}-4}$ | D. | f(x)=lgx2與g(x)=$\sqrt{{x^2}-4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | λ($\overrightarrow{AB}$+$\overrightarrow{BC}$) λ∈(0,1) | B. | λ($\overrightarrow{AB}$+$\overrightarrow{BC}$) λ∈(0,$\frac{\sqrt{2}}{2}$) | C. | λ($\overrightarrow{AB}$-$\overrightarrow{BC}$) λ∈(0,1) | D. | λ($\overrightarrow{AB}$-$\overrightarrow{BC}$) λ∈(0,$\frac{\sqrt{2}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0或$-\frac{1}{7}$ | B. | 0或$\frac{1}{7}$ | C. | $\frac{1}{7}$ | D. | $-\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com