7.已知拋物線y2=2px(p>0)的準(zhǔn)線與圓(x-2)2+y2=9相切,則p的值為(  )
A.2B.3C.4D.5

分析 根據(jù)拋物線y2=2px(p>0)的準(zhǔn)線與圓(x-2)2+y2=9相切,可以得到圓心到準(zhǔn)線的距離等于半徑,從而得到p的值

解答 解:∵拋物線y2=2px(p>0)的準(zhǔn)線與圓(x-2)2+y2=9相切,
拋物線y2=2px(p>0)的準(zhǔn)線為x=-$\frac{p}{2}$,
∴2+$\frac{p}{2}$=3,解得p=2.
故選:A.

點(diǎn)評(píng) 本題考查拋物線的相關(guān)幾何性質(zhì)及直線與圓的位置關(guān)系,理解直線與圓相切時(shí)圓心到直線的距離等于半徑是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線y=kx+3與圓C:(x-2)2+(y-3)2=4相交于M,N兩點(diǎn),若∠MCN>120°,則k的取值范圍為-$\frac{\sqrt{3}}{3}$<k<$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線l經(jīng)過點(diǎn)$(\frac{3}{2},\frac{1}{2})$,且與圓x2+y2-4x+3=0相交于A,B兩點(diǎn),當(dāng)線段AB的長度最小時(shí),直線l的方程為x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=|lgx|,若存在互不相等的實(shí)數(shù)a,b,使f(a)=f(b),則ab=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.光線從點(diǎn)(-1,3)射向x軸,經(jīng)過x軸反射后過點(diǎn)(0,2),則入射光線所在的直線的斜率是-5;

反射光線所在的直線方程是5x-y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(理科)如圖,A,B,C,D在y=$\frac{1}{4}$x2上,A、D關(guān)于拋物線對(duì)稱軸對(duì)稱,過點(diǎn)D(x0,y0)作拋物線切線,可證切線斜率為$\frac{1}{2}$x0,BC∥切線,點(diǎn)D到AB,AC距離分別為d1,d2,d1+d2=$\sqrt{2}$|AD|
①試問:△ABC是銳角,鈍角還是直角三角形?請(qǐng)說明判斷的理由.
②若△ABC的面積為240,求A點(diǎn)的坐標(biāo)和BC直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若a>0,b>0,化簡成指數(shù)冪的形式:$\frac{\root{3}{{a}^{2}b}•\sqrt{ab}}{\sqrt{a^{5}}}$=${a}^{\frac{2}{3}}•^{-\frac{5}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求證$\frac{1}{2}≤\frac{1}{1×2}+\frac{1}{2×3}+…+\frac{1}{n(n+1)}<1$,(n∈N*
(2)已知a,b,c∈R,且a=b+c+1.證明:兩個(gè)一元二次方程x2+x+b=0,x2+ax+c=0中至少有一個(gè)方程有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},}&{x≤0}\\{f(2x-2)}&{0<x≤\frac{3}{2}}\end{array}\right.$,若方程f(x)=x+a有且只有三個(gè)不相等的實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
A.[0,1)B.[1,2)C.[1,3)D.[0,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案