分析 (1)根據(jù)已知,求出函數(shù)的周期,進(jìn)而可得ω=2,再由函數(shù)f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的圖象經(jīng)過點(diǎn)(0,$\frac{1}{2}$),求出φ=$\frac{π}{6}$,可得函數(shù)解析式,代入計(jì)算可得求f($\frac{π}{12}$)的值;
(2)根據(jù)正弦函數(shù)的圖象和性質(zhì),先求出函數(shù)f(x)的單調(diào)遞減區(qū)間為[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z,結(jié)合x∈[-$\frac{π}{2}$,$\frac{3π}{2}$],可得答案.
解答 解:(1)∵對(duì)任意的x都有f(x1)≤f(x)≤f(x2),且|x2-x1|的最小值為$\frac{π}{2}$,
∴$\frac{T}{2}$=$\frac{π}{2}$,即T=π,
又∵ω>0,
∴ω=2,
又∵函數(shù)f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的圖象經(jīng)過點(diǎn)(0,$\frac{1}{2}$),
∴sinφ=$\frac{1}{2}$,
解得:φ=$\frac{π}{6}$,
∴f(x)=sin(2x+$\frac{π}{6}$),
∴f($\frac{π}{12}$)=sin(2×$\frac{π}{12}$+$\frac{π}{6}$)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,
(2)由2x+$\frac{π}{6}$∈[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ],k∈Z得:x∈[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+2kπ],k∈Z,
故函數(shù)f(x)的單調(diào)遞減區(qū)間為[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z,
又∵x∈[-$\frac{π}{2}$,$\frac{3π}{2}$],
∴函數(shù)f(x)在[-$\frac{π}{2}$,$\frac{3π}{2}$]上的單調(diào)遞減區(qū)間為[-$\frac{π}{2}$,-$\frac{π}{3}$],[$\frac{π}{6}$,$\frac{2π}{3}$],[$\frac{7π}{6}$,$\frac{3π}{2}$].
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是正弦函數(shù)的圖象和性質(zhì),熟練掌握正弦函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com