分析 利用偶函數(shù)的定義可得f(-x)=f(x)=f(|x|),及f(x)在[0,+∞)上是減函數(shù),對數(shù)運算性質(zhì)即可得出答案.
解答 解:∵定義在R上的偶函數(shù)f(x),且f(x)在[0,+∞)上單調(diào)遞減,
∴不等式f(lgx)<f(1)可化為:
f(|lgx|)<f(1),即|lgx|<1,
即-1<lgx<1,
解得:x∈($\frac{1}{10}$,10),
故答案為:($\frac{1}{10}$,10)
點評 熟練掌握函數(shù)的奇偶性、單調(diào)性及對數(shù)運算性質(zhì)是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7}{2}$ | B. | -4 | C. | -$\frac{9}{2}$ | D. | -$\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,$\frac{3}{2e}$] | B. | (-$\frac{3}{4}$,$\frac{3}{2e}$] | C. | (-$\frac{3}{4}$,-$\frac{3}{2e}$] | D. | (-1,-$\frac{3}{2e}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3≤x<2} | B. | {x|2<x≤3} | C. | {x|-3≤x≤4} | D. | {x|x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | ±1 | C. | 2 | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com