已知函數(shù)f(x)=ex,g(x)=ax2+bx+1,當a=0時,若f(x)≥g(x)對任意x恒成立,求b的取值集合.
考點:函數(shù)恒成立問題
專題:函數(shù)的性質及應用
分析:令h(x)=ex-bx-1≥0對任意x恒成立,h'(x)=ex-b,由此利用導數(shù)性質能求出b的取值集合.
解答: 解:∵函數(shù)f(x)=ex,g(x)=ax2+bx+1,
當a=0時,f(x)≥g(x)對任意x恒成立,
令h(x)=ex-bx-1≥0對任意x恒成立,
h(x)=e^2-bx-1,當x=lnb取最小,最小值應為為b-blnb-1≥0,
令t(b)=b-blnb-1
t'(b)=1-b•
1
b
-lnb=-lnb=0時,
b=1,t(b)在(0,1)上單調遞增,在(1,+∞)上單調遞增,
所以t(b)max=t(1)=0
所以只有b=1時滿足h(lnb)≥0,
所以b∈{1}.
點評:本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意導數(shù)性質和分類討論思想的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若f(x)=
2-x,x∈(-∞,1]
log81x,x∈(1,+∞)
,求滿足f(x)=
1
4
的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)由數(shù)字0,1,2,3,4,5組成沒有重復數(shù)字的六位數(shù),其中個位數(shù)字小于十位數(shù)字的共有多少個?
(2)某高校從某系的10名優(yōu)秀畢業(yè)生中選4人分別到西部四城市參加中國西部經濟開發(fā)建設,其中甲同學不到銀川,乙不到西寧,共有多少種不同派遣方案?
(3)將4個相同的白球、5個相同的黑球、6個相同的紅球放入4各不同的盒子中的3個中,使得有一個空盒且其他盒子中球的顏色齊全的不同放法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷并證明函數(shù)f(x)=ln(1+e2x)-x的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高校在2012年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
成績分組頻數(shù)頻率
(160,165]50.05
(165,170]0.35
(170,175]30
(175,180]200.20
(180,185]100.10
合計1001
(1)請先求出頻率分布表中①、②位置相應的數(shù)據(jù),再在答題紙上完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學生,該高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在6名學生中隨機抽取2名學生接受A考官的面試,求第四組至少有一名學生被考官A面試的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=9x-2×3x+4,x∈[-1,2].
(1)已知f(x)=7,求x的值;
(2)設t=3x,x∈[-1,2],求t的最大值與最小值;
(3)求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,C,D是兩個小區(qū)的所在地,C,D到一條公路AB的垂直距離CA=1km,DB=2km,AB兩端之間的距離為4km.某公交公司將在AB之間找一點N,在N處建造一個公交站臺.
(1)設AN=x,試寫出用x表示∠CND正切的函數(shù)關系式,并給出x的范圍;
(2)是否存在x,使得∠CND與∠DNB相等.若存在,請求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若命題:“?x∈R,使得x2+(1-a)x+1<0”是真命題,求實數(shù)a的取值范圍.
(2)已知命題p:|1-
x-1
3
|≤2,命題q:(x-1+m)(x-1-m)≤0(m>0),且命題q是命題p的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log
1
2
(x2-4x-12)的單調遞增區(qū)間是
 

查看答案和解析>>

同步練習冊答案