【題目】已知函數(shù),

1)求證上遞增;

2)若上的值域是,求實數(shù)a的取值范圍;

3)當(dāng)上恒成立,求實數(shù)a的取值范圍.

【答案】1)證明見解析;(2;(3

【解析】

1)設(shè),計算得到證明.

2)若上的值域是,則,構(gòu)造函數(shù) ),利用兩函數(shù)的圖像有兩個公共點,即求實數(shù)a的取值范圍;

3)當(dāng)上恒成立上恒成立,構(gòu)造函數(shù),利用基本不等式可求得,從而可求實數(shù)a的取值范圍.

1)設(shè),則

,即函數(shù)單調(diào)遞增.

2)∵上單調(diào)遞增,∴若上的值域是,

,即,

故函數(shù))的圖像有兩個公共點,

∵當(dāng)時,(當(dāng)且僅當(dāng),即時取“=”),

,解得.

3)∵,上恒成立上,

上恒成立,

,則(當(dāng)且僅當(dāng),即時取等號),

要使上恒成立,故a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)學(xué)院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1到6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見下表:

該院確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.

(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的兩個月的概率;

(Ⅱ)已知選取的是1月與6月的兩組數(shù)據(jù).

(1)請根據(jù)2到5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該協(xié)會所得線性回歸方程是否理想?

(參考公式和數(shù)據(jù):

)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面平面,底面為矩形,,,、分別為線段、上一點,且,.

(1)證明:;

(2)證明:平面,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進(jìn)行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標(biāo),對某運動員進(jìn)行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分

布直方圖:

(1)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);

(2)若從該運動員投籃命中時,他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運動員投籃命中時,他到籃筐中心的水平距離越遠(yuǎn)越好),并從抽到的這7次成績中隨機抽取2次.規(guī)定:這2次成績均來自到籃筐中心的水平距離為4到5米的這一組,記 1分,否則記0分.求該運動員得1分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C=2pxp>0)的準(zhǔn)線方程為x=-,F為拋物線的焦點

I)求拋物線C的方程;

II)若P是拋物線C上一點,點A的坐標(biāo)為(,2,的最小值;

III)若過點F且斜率為1的直線與拋物線C交于M,N兩點,求線段MN的中點坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以坐標(biāo)原點為極點,以軸正半軸為極軸.已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,射線與曲線分別交異于極點的四點.

(1)若曲線關(guān)于曲線對稱,求的值,并把曲線化成直角坐標(biāo)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為拋物線的焦點,為拋物線上三點,且點在第一象限,直線經(jīng)過點與拋物線在點處的切線平行,點的中點.

(1)證明:軸平行;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:

為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中AB兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

交付金額(元)

支付方式

0,1000]

1000,2000]

大于2000

僅使用A

18

9

3

僅使用B

10

14

1

(Ⅰ)從全校學(xué)生中隨機抽取1人,估計該學(xué)生上個月AB兩種支付方式都使用的概率;

(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;

(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

同步練習(xí)冊答案