5.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,$b=\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

分析 (1)由等差數(shù)列的性質(zhì)及三角形內(nèi)角和定理可求$B=\frac{π}{3}$,由正弦定理可求a=$\frac{3c}{4}$,進(jìn)而利用余弦定理可得c的值.
(2)由正弦定理,可得a=$\frac{2\sqrt{13}}{\sqrt{3}}$sinA,c=$\frac{2\sqrt{13}}{\sqrt{3}}$sinC,利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得a+c=2$\sqrt{13}$sin(A+$\frac{π}{6}$),由$0<A<\frac{2π}{3}$,可求范圍$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$,進(jìn)而利用正弦函數(shù)的性質(zhì)可求最大值.

解答 解:(1)∵由角A,B,C的度數(shù)成等差數(shù)列,得2B=A+C.
又∵A+B+C=π,
∴$B=\frac{π}{3}$.
∴由正弦定理,可得:3c=4a,即a=$\frac{3c}{4}$,
∴由余弦定理,可得:b2=a2+c2-2accosB,即:13=($\frac{3c}{4}$)2+c2-2×$\frac{3c}{4}×c×\frac{1}{2}$,解得:c=4.
(2)由正弦定理,可得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$=$\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{13}}{\sqrt{3}}$,
∴a=$\frac{2\sqrt{13}}{\sqrt{3}}$sinA,c=$\frac{2\sqrt{13}}{\sqrt{3}}$sinC,
∴$a+c=\frac{{2\sqrt{13}}}{{\sqrt{3}}}({sinA+sinC})=\frac{{2\sqrt{13}}}{{\sqrt{3}}}[{sinA+sin({A+B})}]=\frac{{2\sqrt{13}}}{{\sqrt{3}}}[{sinA+sin({A+\frac{π}{3}})}]$=$\frac{{2\sqrt{13}}}{{\sqrt{3}}}({\frac{3}{2}sinA+sin\frac{{\sqrt{3}}}{2}cosA})=2\sqrt{13}sin({A+\frac{π}{6}})$.
由$0<A<\frac{2π}{3}$,得$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$.
所以當(dāng)$A+\frac{π}{6}=\frac{π}{2}$,即$A=\frac{π}{3}$時(shí),${({a+c})_{max}}=2\sqrt{13}$.

點(diǎn)評(píng) 本題主要考查了等差數(shù)列的性質(zhì),三角形內(nèi)角和定理,正弦定理,余弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x)是定義在R上的奇函數(shù),且在[0,+∞)上是增函數(shù),則f(x+1)≥0的解集為( 。
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知點(diǎn)A(-1,2),B(1,3),則向量$\overrightarrow{AB}$的坐標(biāo)為(2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),則下列結(jié)論中一定正確的是( 。
A.函數(shù)f(x)+x2是奇函數(shù)B.函數(shù)f(x)+|x|是偶函數(shù)
C.函數(shù)x2f(x)是奇函數(shù)D.函數(shù)|x|f(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某投資公司準(zhǔn)備在2016年年底將1000萬(wàn)元投資到某“低碳”項(xiàng)目上,據(jù)市場(chǎng)調(diào)研,該項(xiàng)目的年投資回報(bào)率為20%.該投資公司計(jì)劃長(zhǎng)期投資(每一年的利潤(rùn)和本金繼續(xù)用作投資),若市場(chǎng)預(yù)期不變,大約在2020年的年底總資產(chǎn)(利潤(rùn)+本金)可以翻一番.(參考數(shù)據(jù):lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:?x∈R,sinx≤1,則¬p為(  )
A.?x∈R,sinx≤1B.?x∈R,sinx>1C.?x∈R,sinx≥1D.?x∈R,sinx>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)面PBC是直角三角形,∠PCB=90°,點(diǎn)E是PC的中點(diǎn),且平面PBC⊥平面ABCD.
求證:
(1)AP∥平面BED;
(2)BD⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知曲線$y=\frac{1}{x}$.
(1)求滿足斜率為$-\frac{1}{3}$的曲線的切線方程;
(2)求曲線過(guò)點(diǎn)P(1,0)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求過(guò)點(diǎn)P(-1,5)的圓(x-1)2+(y-2)2=4的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案