【題目】地球海洋面積遠遠大于陸地面積,隨著社會的發(fā)展,科技的進步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟利益,還擁有著深遠的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的6月8日確定為“世界海洋日”.2019年6月8日,某大學(xué)的行政主管部門從該大學(xué)隨機抽取100名大學(xué)生進行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組,第二組,第二組,第四組,第五組,得到頻率分布直方圖如下圖:
(1)求實數(shù)的值;
(2)若從第二組、第五組的學(xué)生中按組用分層抽樣的方法抽取9名學(xué)生組成中國海洋實地考察小隊,出發(fā)前,用簡單隨機抽樣方法從9人中抽取2人作為正、副隊長,求“抽取的2人為不同組”的概率.
【答案】(1);(2)
【解析】
(1)根據(jù)諸矩形的面積為1可求實數(shù)的值;
(2)9名學(xué)生中第二組人數(shù)為7人,第五組的人數(shù)為2人,利用組合數(shù)可計算基本事件的總數(shù)和隨機事件中基本事件的個數(shù),從而可求概率.
(1)根據(jù)頻率分布直方圖可得:,故.
(2)根據(jù)頻率分布直方圖可得第2組和第5組的頻率之比為,
故9名學(xué)生中第二組人數(shù)為7人,第五組的人數(shù)為2人,
設(shè)“抽取的2人為不同組”為事件,則從9人抽取2人,不同的取法總數(shù)為,
抽取的2人為不同組,共有種取法,故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
年齡x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收縮壓單位 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:,,
請畫出上表數(shù)據(jù)的散點圖;
請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;的值精確到
若規(guī)定,一個人的收縮壓為標準值的倍,則為血壓正常人群;收縮壓為標準值的倍,則為輕度高血壓人群;收縮壓為標準值的倍,則為中度高血壓人群;收縮壓為標準值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的對角線與相交于點,平面,四邊形為平行四邊形.
(1)求證:平面平面;
(2)若,,點在線段上,且,求平面與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( )
A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數(shù)都超過50人
B. 由三角形的性質(zhì),推測空間四面體的性質(zhì)
C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分
D. 在數(shù)列中,,可得,由此歸納出的通項公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值.
(1)直線l1過點(-3,-1),并且直線l1與l2垂直;
(2)直線l1與直線l2平行,并且坐標原點到l1,l2的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點是拋物線上的動點,是的準線上的動點,直線過且與(為坐標原點)垂直,則點到的距離的最小值的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線上一點,為的焦點.
(1)若,是上的兩點,證明:,,依次成等比數(shù)列.
(2)過作兩條互相垂直的直線與的另一個交點分別交于,(在的上方),求向量在軸正方向上的投影的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在全校范圍內(nèi)舉辦了一場“中國詩詞大會”的比賽,規(guī)定初賽測試成績不小于160分的學(xué)生進入決賽階段比賽.現(xiàn)有200名學(xué)生參加測試,并將所有測試成績統(tǒng)計如下表:
分數(shù)段 | 頻數(shù) | 頻率 |
6 | 0.03 | |
0.38 | ||
100 | 0.5 | |
6 | 0.03 | |
合計 | 200 | 1 |
(1)計算的值;
(2)現(xiàn)利用分層抽樣的方法從進入決賽的學(xué)生中選擇6人,再從選出的6人中選2人做進一步的研究,求選擇的2人中至少有1人的分數(shù)在的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com