【題目】設(shè)向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.

【答案】
(1)解:∵ =(cosθ,sinθ), =(﹣ , ), ,

∴﹣ sinθ= cosθ,

∴sin(θ+ )=0,θ∈(0,π),

∴θ=


(2)解:若|3 + |=| ﹣3 |,

+ = + ,

整理得: sinθ﹣cosθ=0,

| + |= = =


【解析】(1),根據(jù)向量平行,得到sin(θ+ )=0,結(jié)合θ的范圍,求出即可;(2)根據(jù)向量的運(yùn)算得到 sinθ﹣cosθ=0,求出| + |的值即可.
【考點(diǎn)精析】通過靈活運(yùn)用平面向量的坐標(biāo)運(yùn)算,掌握坐標(biāo)運(yùn)算:設(shè),;;設(shè),則即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面四個(gè)命題: ①若直線a,b異面,b,c異面,則a,c異面;
②若直線a,b相交,b,c相交,則a,c相交;
③若a∥b,則a,b與c所成的角相等;
④若a⊥b,b⊥c,則a∥c.
其中真命題的個(gè)數(shù)為(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等ax2﹣3x+2>0的解集{x|x<1或x>b}
(Ⅰ)求a,b的值;
(Ⅱ)解關(guān)于x的不等式:ax2﹣(ac+b)x+bx<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是首項(xiàng)為正數(shù)的等差數(shù)列,數(shù)列的前項(xiàng)和為.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ 的圖象過點(diǎn)P(1,5). (Ⅰ)求實(shí)數(shù)m的值,并證明函數(shù)f(x)是奇函數(shù);
(Ⅱ)利用單調(diào)性定義證明f(x)在區(qū)間[2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P是圓F1:(x﹣1)2+y2=8上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對稱,線段PF2的垂直平分線分別與PF1,PF2交于M,N兩點(diǎn).

(1)求點(diǎn)M的軌跡C的方程;

(2)過點(diǎn)G(0, )的動直線l與點(diǎn)的軌跡C交于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)Q,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).

分?jǐn)?shù)段

[50,60)

[60,70)

[70,80)

[80,90)

x:y

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)空間幾何體的正視圖和俯視圖,則它的側(cè)視圖為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù) 在(0,+∞)上為增函數(shù),g(x)=f(x)+2
(1)求m的值,并確定f(x)的解析式;
(2)對于任意x∈[1,2],都存在x1 , x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求實(shí)數(shù)t的值;
(3)若2xh(2x)+λh(x)≥0對于一切x∈[1,2]成成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案