【題目】已知函數(shù).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
(Ⅰ)對函數(shù)求導(dǎo),根據(jù)討論的取值及的單調(diào)性,從而得到函數(shù)的極值;
(Ⅱ)根據(jù)當(dāng)時(shí),恒成立,轉(zhuǎn)化為恒成立,再構(gòu)造函數(shù),利用導(dǎo)數(shù)及函數(shù)的單調(diào)性討論的范圍求最值得到答案.
(Ⅰ)函數(shù)的定義域?yàn)?/span>.
當(dāng)時(shí),恒成立,所以在上單調(diào)遞增,則函數(shù)無極值;
當(dāng)時(shí),令,則,
故當(dāng)時(shí),,當(dāng)時(shí),,
從而在上單調(diào)遞減,在上單調(diào)遞增,
所以當(dāng)時(shí),函數(shù)取得極小值,無極大值;
綜上可知,當(dāng)時(shí),函數(shù)無極值;
當(dāng)時(shí),函數(shù)有極小值,無極大值.
(Ⅱ)當(dāng),恒成立,即恒成立,
即恒成立,令,
則恒成立,即,
則必有成立,即.
,
令,則,可知,
由知,當(dāng)時(shí),,
可知時(shí),,時(shí),,
所以在上單調(diào)遞減,在上單調(diào)遞增,
故,
所以只需,即,故;
當(dāng)時(shí),,可知)時(shí),,
時(shí),,
所以在上單調(diào)遞增,在上單調(diào)遞減,
故,只需,
即成立,即.
綜上可知,的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實(shí)數(shù)k,b,使得函數(shù)和對其定義域上的任意實(shí)數(shù)x同時(shí)滿足:且,則稱直線:為函數(shù)和的“隔離直線”.已知,(其中e為自然對數(shù)的底數(shù)).試問:
(1)函數(shù)和的圖象是否存在公共點(diǎn),若存在,求出交點(diǎn)坐標(biāo),若不存在,說明理由;
(2)函數(shù)和是否存在“隔離直線”?若存在,求出此“隔離直線”的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(x∈R,實(shí)數(shù)a∈[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),).
(Ⅰ)若f(x)≥0在x∈R上恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若ex≥lnx+m對任意x>0恒成立,求證:實(shí)數(shù)m的最大值大于2.3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與直線分別與橢圓交于點(diǎn),且四邊形的面積為.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),是否存在經(jīng)過原點(diǎn),且以為直徑的圓?若有,請求出圓的方程,若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的兩個(gè)頂點(diǎn)坐標(biāo)是,,的周長為,是坐標(biāo)原點(diǎn),點(diǎn)滿足.
(1)求點(diǎn)的軌跡的方程;
(2)若互相平行的兩條直線,分別過定點(diǎn)和,且直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),若四邊形的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子中裝有4個(gè)大小、形狀、手感完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4.現(xiàn)每次有放回地從中任意取出一個(gè)小球,直到標(biāo)有偶數(shù)的球都取到過就停止.小明用隨機(jī)模擬的方法估計(jì)恰好在第3次停止摸球的概率,利用計(jì)算機(jī)軟件產(chǎn)生隨機(jī)數(shù),每1組中有3個(gè)數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
131 432 123 233 234 122 332 141 312 241 122 214 431 241 141 433 223 442
由此可以估計(jì)恰好在第3次停止摸球的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面四邊形中,為直角,為等邊三角形,現(xiàn)把沿著折起,使得平面與平面垂直,且點(diǎn)M為的中點(diǎn).
(1)求證:平面平面;
(2)若,求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算幾何體體積的祖暅原理:“冪勢既同,則積不容異“.意思是兩個(gè)同高的幾何體,如果在等高處的截面積都相等,那么這兩個(gè)幾何體的體積相等.現(xiàn)有某幾何體和一個(gè)圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為( )
A.πB.πC.4D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是2020項(xiàng)的實(shí)數(shù)數(shù)列,中的每一項(xiàng)都不為零,中任意連續(xù)11項(xiàng)的乘積是定值.
①存在滿足條件的數(shù)列,使得其中恰有365個(gè)1;
②不存在滿足條件的數(shù)列,使得其中恰有550個(gè)1.
命題的真假情況為( )
A.①和②都是真命題B.①是真命題,②是假命題
C.②是真命題,①是假命題D.①和②都是假命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com