【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于兩點(diǎn),過作軸且與橢圓交于另一點(diǎn), 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線上.
【答案】(Ⅰ);(Ⅱ)見解析.
【解析】試題分析:(Ⅰ)由焦距為2可得,解方程得的值,即可得橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線的方程為,點(diǎn),聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理可得, ,直線方程為,結(jié)合點(diǎn)在上,用, 代替, ,化簡整理直線方程為,令,整理得,得證.
試題解析:(Ⅰ)∵橢圓的焦點(diǎn)在軸上,
∴,即,
∵橢圓的焦距為2,且,
∴,解得,
∴橢圓的標(biāo)準(zhǔn)方程為;
(Ⅱ)由題知直線的斜率存在,
設(shè)的方程為,點(diǎn),
則得,
即, ,
, ,
由題可得直線方程為,
又∵, ,
∴直線方程為,
令,整理得
,
即直線過點(diǎn),
又∵橢圓的右焦點(diǎn)坐標(biāo)為,
∴三點(diǎn)在同一條直線上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上為達(dá)標(biāo),試估計(jì)全體高一學(xué)生的達(dá)標(biāo)率為多少?
(3)通過該統(tǒng)計(jì)圖,可以估計(jì)該地學(xué)生跳繩次數(shù)的眾數(shù)是 , 中位數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用長14.8 m的鋼條制作一個長方體容器的框架,如果所制的底面的一邊比另一邊長0.5 m,那么容器的最大容積為________m3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:以點(diǎn)C(t, )(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).
(1)當(dāng)t=2時,求圓C的方程;
(2)求證:△OAB的面積為定值;
(3)設(shè)直線y=﹣2x+4與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x-k)ex,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A、B、C的對邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若方程所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則1<t<4且t≠;
②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;
④若C表示橢圓,且長軸在x軸上,則1<t<.
其中正確的命題是________(把所有正確命題的序號都填在橫線上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com