某商店預(yù)出售一種商品,經(jīng)市場調(diào)查知,該商品定價為x元每件時可以賣出(100-x)件,又知每件的進貨價格為20元,
(1)設(shè)利潤為y,把y表示成x的函數(shù),并寫出函數(shù)的定義域;
(2)定價x為多少元時,才能獲得最大的利潤.
考點:函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用該商品定價為x元每件時可以賣出(100-x)件,又知每件的進貨價格為20元,可得y=(x-20)(100-x)(20<x<100);
(2)利用基本不等式,即可得出結(jié)論.
解答: 解:(1)∵該商品定價為x元每件時可以賣出(100-x)件,又知每件的進貨價格為20元,
∴y=(x-20)(100-x)(20<x<100),
(2)y=(x-20)(100-x)≤(
x-20+100-x
2
)2
=1600,
當且僅當x-20=100-x,即x=60元時,才能獲得最大的利潤.
點評:本題考查函數(shù)模型的選擇與應(yīng)用,考查基本不等式的運用,考查學(xué)生的計算能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)(x∈R)構(gòu)成的集合:①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.
(Ⅰ)判斷函數(shù)f(x)=
x
2
+
cos
8
-
1
8
是否是集合M中的元素,并說明理由;
(Ⅱ)若函數(shù)f(x)是集合M中的一個元素,x0是方程f(x)-x=0的實數(shù)根,求證:對于定義域中的任意兩個實數(shù)x1,x2,當|x0-x1|<1且|x2-x0|<1時,不等式|f(x2)-f(x1)|<2成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2+a,g(x)=2ax+1,a∈R
(1)證明:方程f(x)=g(x)恒有兩個不相等的實數(shù)根;
(2)若函數(shù)f(x)在(0,2)上無零點,請你探究函數(shù)y=|g(x)|在(0,2)上的單調(diào)性;
(3)設(shè)F(x)=f(x)-g(x),若對任意的x∈(0,1),恒有:-1<F(x)<1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x
3
 
+a
x
2
 
+bx

(1)若函數(shù)f(x)在區(qū)間[-1,1),(1,3]內(nèi)各有一個極值點,當以a2-b取最大值時,求函數(shù)f(x)的表達式;
(2)若a=-1,在曲線y=f(x)上是否存在唯一的點P,使曲線在點P處的切線l與曲線只有一個公共點?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實數(shù),函數(shù)f(x)=x3-ax2-4x+4a
(1)若a=
1
2
,求f(x)在[-2,2]上的最大值和最小值;
(2)若f(x)在(2,+∞)上是單調(diào)遞增的,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2m-1<x<3m+2},B={x|x≤-2或x≥5},若A∩B≠∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x=a和x=b是函數(shù)f(x)=lnx+
1
2
x2-(m+2)x的兩個極值點,其中a<b,m∈R.
(1)求f(a)+f(b)的取值范圍;
(2)若m≥
e
+
1
e
-2(e為自然對數(shù)的底數(shù)),求f(b)-f(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線S:y=x3-6x2-x+6,求S上斜率最小的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-
1
x
-(a+1)lnx(a>0).
(Ⅰ)若曲線y=f(x)在點(2,f(2))處的切線與直線y=
3
4
x平行,求實數(shù)a的值;
(Ⅱ)若函數(shù)f(x)在x=1處取得極小值,且m≥-a2+4a,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案