過點A(-2,1)且在兩坐標軸上截距相等的直線l的方程為
 
考點:直線的截距式方程
專題:分類討論,直線與圓
分析:分情況討論,直線過原點和不過原點兩種情況.
解答: 解:①直線過原點時,由兩點式易得,直線方程為y=-
1
2
x
;
②直線不過原點時,設截距為a
則直線方程為
x
a
+
y
a
=1,又∵直線l過點A

-2
a
+
1
a
=1

∴a=-1
∴直線方程為:y=-x-1
故答案是y=-
1
2
x
或y=-x-1
點評:本題考查待定系數(shù)法求直線方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設p:函數(shù)f(x)=
ax2-x+a
的定義域為R;q:不等式ax>1的解集是{x|x<0},如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為減少空氣污染,某市鼓勵居民用電(減少粉塵),并采用分段計費的方法計算電費.當每家庭月用電量不超過100度時,按每度0.57元計算;當每月用電量超過100度時,其中的100度仍按原標準收費,超過的部分每度按0.5元計算.
(1)設月用電x度時,應交電費y元,寫出y關于x的函數(shù)關系式;
(2)若某家庭一月份用電120度,問應交電費多少元?
(3)若某家庭第一季度繳納電費情況如下表:
月份 1月 2月 3月 合計
交費金額(元) 76 63 45.6 184.6
問這個家庭第一季度共用多少度電?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式|x+2|+|x-m|≤3的解集為{x|-2≤x≤1}.
(Ⅰ)求m的值;
(Ⅱ)若a2+2b2+3c2=m,求a+2b+3c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a•(
1
2
x+(
1
4
x
(1)當a=1,求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=x2,x=0,y=1,所圍成的圖形的面積可用定積分表示為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c∈R,則下列說法正確的是( 。
A、若a>b,則a-c>b-c
B、若a>b,則
a
c
b
c
C、若ac<bc,則a<b
D、若a>b,則ac2>bc2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin6,cos6,tan6,cos2中,大于0的是( 。
A、sin6B、cos6
C、tan6D、cos2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點 A(2,-3),B(-3,-2),若直線l:y=k(x-1)+1與線段AB相交,則直線l的斜率的范圍是( 。
A、k≥
3
4
或k≤-4
B、-4≤k≤
3
4
C、k<-
1
5
D、-
3
4
≤k≤4

查看答案和解析>>

同步練習冊答案