若函數(shù)f(x)=lg(ax2-2x+1)的值域為R,則實數(shù)a的取值范圍是
 
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題中函數(shù)y=lg(ax2-2x+1)的值域為R,故內(nèi)層函數(shù)ax2-2x+1的值域要取遍全體正實數(shù),當a=0時符合條件,當a>0時,可由△≥0保障 內(nèi)層函數(shù)的值域能取遍全體正實數(shù).
解答: 解:當a=0時符合條件,故a=0可。
當a>0時,△=4-4a≥0,解得a≤1,故0<a≤1,
綜上知實數(shù)a的取值范圍是[0,1],
故答案為:[0,1].
點評:本題考點是對數(shù)函數(shù)的值域與最值,考查對數(shù)函數(shù)的定義其定義域為全體實數(shù)的等價條件的理解,本題是一個易錯題,應(yīng)依據(jù)定義理清轉(zhuǎn)化的依據(jù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則將y=f(x)的圖象向右平移
π
6
個單位后,得到的圖象的解析式為( 。
A、y=sin 2x
B、y=cos 2x
C、y=sin(2x+
3
D、y=sin(2x-
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形ABC的三內(nèi)角A、B、C所對的邊長分別是a,b,c若(a+b)(sinB-sinA)=(
3
a+c)sinC,則角B的大小為( 。
A、
π
6
B、
π
3
C、
6
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,且cos2B+3cos(A+C)+2=0,b=
3
,則c:sinC等于(  )
A、3:1
B、
3
:1
C、
2
:1
D、2:1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x2-2x
的單調(diào)增區(qū)間為( 。
A、(-∞,0]
B、[2,+∞)
C、[0,1]
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
1
a
+
4
b
=1,且a>0,b>0,則a+b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是等比數(shù)列,則方程組
a1x+a2y=a4
a5x+a6y=a8
的解的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若a,b,c成等比數(shù)列,則cosB的最小值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)的圖象過點(2,8),則f(
1
2
)
=
 

查看答案和解析>>

同步練習冊答案