【題目】設(shè)的內(nèi)角所對(duì)的邊分別是,且是與的等差中項(xiàng).
(Ⅰ)求角;
(Ⅱ)設(shè),求周長(zhǎng)的最大值.
【答案】(1)60°;(2)6.
【解析】分析:(1)法一:由題意,利用正弦定理,化簡(jiǎn)得,即可求解角的大。
法二:由題意,利用余弦定理化簡(jiǎn)得到,即,即可求解角的大小;
(2)法一:由余弦定理及基本不等式,得,進(jìn)而得周長(zhǎng)的最大值;法二:由正弦定理和三角恒等變換的公式化簡(jiǎn)整理得,進(jìn)而求解周長(zhǎng)的最大值.
詳解:(1)法一:由題,,
由正弦定理,,
即,解得,所以.
法二:由題,由余弦定理得: ,
解得,所以.
(2)法一:由余弦定理及基本不等式,
,
得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
故周長(zhǎng)的最大值為.
法二:由正弦定理,,
故周長(zhǎng)
∵,∴當(dāng)時(shí),周長(zhǎng)的最大值為.
法三:如圖,延長(zhǎng)至使得,則,
于是,在中,由正弦定理:,
即,
故周長(zhǎng),
∵,∴當(dāng)時(shí),周長(zhǎng)的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)銷(xiāo)售某一品牌的羊毛衫,購(gòu)買(mǎi)人數(shù)是羊毛衫標(biāo)價(jià)的一次函數(shù),標(biāo)價(jià)越高,購(gòu)買(mǎi)人數(shù)越少.把購(gòu)買(mǎi)人數(shù)為零時(shí)的最低標(biāo)價(jià)稱為無(wú)效價(jià)格,已知無(wú)效價(jià)格為每件300元.現(xiàn)在這種羊毛衫的成本價(jià)是100元/ 件,商場(chǎng)以高于成本價(jià)的價(jià)格(標(biāo)價(jià))出售. 問(wèn):
(1)商場(chǎng)要獲取最大利潤(rùn),羊毛衫的標(biāo)價(jià)應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤(rùn)只是一種“理想結(jié)果”,如果商場(chǎng)要獲得最大利潤(rùn)的75%,那么羊毛衫的標(biāo)價(jià)為每件多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐 中,底面 為菱形,且直線 又棱 為 的中點(diǎn),
(Ⅰ) 求證:直線 ;
(Ⅱ) 求直線 與平面 的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線 ,過(guò)點(diǎn) 的直線 ( 為參數(shù))與曲線 相交于點(diǎn) , 兩點(diǎn).
(1)求曲線 的平面直角坐標(biāo)系方程和直線 的普通方程;
(2)求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐的底面為直角梯形, .點(diǎn)是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)已知平面底面,且.在棱上是否存在點(diǎn),使?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下關(guān)于命題的說(shuō)法正確的有(填寫(xiě)所有正確命題的序號(hào)).
①“若 ,則函數(shù) ( ,且 )在其定義域內(nèi)是減函數(shù)”是真命題;
②命題“若 ,則 ”的否命題是“若 ,則 ”;
③命題“若 , 都是偶數(shù),則 也是偶數(shù)”的逆命題為真命題;
④命題“若 ,則 ”與命題“若 ,則 ”等價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) , ,其中 .
(1)當(dāng) 時(shí),求函數(shù) 的單調(diào)遞減區(qū)間;
(2)若對(duì)任意的 , ( 為自然對(duì)數(shù)的底數(shù))都有 成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的余弦值;
(Ⅲ)求點(diǎn)A到平面PCD的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com