分析 不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc,從而利用排序不等式可證明3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc),從而證明.
解答 解:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc,
據(jù)排序不等式有:
alga+blgb+clgc≥blga+clgb+algc;
alga+blgb+clgc≥clga+algb+blgc;
alga+blgb+clgc=alga+blgb+clgc;
上述三式相加得:
3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc),
即lg(aabbcc)≥$\frac{a+b+c}{3}$lg(abc),
即aabbcc≥(abc)${\;}^{\frac{a+b+c}{3}}$.
點(diǎn)評(píng) 本題考查了不等關(guān)系的判斷與應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com