【題目】已知函數(shù)f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求實數(shù)a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求實數(shù)a的取值范圍.

【答案】
(1)解:

g(x)=a(x﹣2a)(x+a﹣2)=0得x=2a,x=2﹣a

∵{x|f(x)g(x)=0}={1,2},

經(jīng)檢驗a=1符合題意,∴a=1


(2)解法1:設(shè)由于{x|f(x)<0或g(x)<0}=R

當(dāng)a>0時,x→+∞總有f(x)>0,g(x)>0不符合題意

當(dāng)a<0時,由f(x),g(x)的圖象可得f(x)<0或g(x)<0成立則

解法2:設(shè)由于{x|f(x)<0或g(x)<0}=R

當(dāng)a>0時,x→+∞總有f(x)>0,g(x)>0不符合題意

當(dāng)a<0時,若f(x)<0,則

若g(x)<0,則x∈(2﹣a,+∞)∪(﹣∞,2a)

綜上


【解析】(1)通過方程的根,結(jié)合已知條件求解即可.(2)解法1:利用{x|f(x)<0或g(x)<0}=R,通過當(dāng)a>0時,當(dāng)a<0時,結(jié)合函數(shù)的圖象驗證求解即可.解法2:由于{x|f(x)<0或g(x)<0}=R,驗證當(dāng)a>0時,不符合題意,當(dāng)a<0時,討論若f(x)<0,若g(x)<0,推出結(jié)果即可.
【考點精析】本題主要考查了函數(shù)的值的相關(guān)知識點,需要掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,函數(shù) ,且圖象上一個最高點為最近的一個最低點的坐標(biāo)為 .

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)設(shè)為常數(shù),判斷方程在區(qū)間上的解的個數(shù);

(Ⅲ)在銳角中,若,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)偶函數(shù)f(x)的定義域為[﹣4,0)∪(0,4],若當(dāng)x∈(0,4]時,f(x)=log2x,
(1)求出函數(shù)在定義域[﹣4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩個袋子,其中甲袋中裝有編號分別為1、2、3、4的4個完全相同的球,乙袋中裝有編號分別為2、4、6的3個完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個球,求兩球編號之和小于8的概率;
(Ⅱ)從甲袋中取2個球,從乙袋中取一個球,求所取出的3個球中含有編號為2的球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017衡陽第二次聯(lián)考已知四棱錐中,底面為矩形, 底面, 上一點, 的中點.

(1)在圖中作出平面的交點,并指出點所在位置(不要求給出理由);

(2)求平面將四棱錐分成上下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列函數(shù):①f(x)= ,g(x)=x+1;②f(x)=|x|,g(x)= ;③f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.其中,是同一函數(shù)的是(
A.①②③
B.①③
C.②③
D.②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在2014年上半年的收入x(單位:萬元)與月支出y(單位:萬元)的統(tǒng)計資料如下表所示:

月份

1月份

2月份

3月份

4月份

5月份

6月份

收入x

12.3

14.5

15.0

17.0

19.8

20.6

支出Y

5.63

5.75

5.82

5.89

6.11

6.18

根據(jù)統(tǒng)計資料,則( 。
A.月收入的中位數(shù)是15,x與y有正線性相關(guān)關(guān)系
B.月收入的中位數(shù)是17,x與y有負(fù)線性相關(guān)關(guān)系
C.月收入的中位數(shù)是16,x與y有正線性相關(guān)關(guān)系
D.月收入的中位數(shù)是16,x與y有負(fù)線性相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)在(0,+∞)內(nèi)是減函數(shù),又有f(3)=0,則f(x)>0的解集為 , xf(x)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R的奇函數(shù)f(x)滿足當(dāng)x>0時,f(x)=|2x﹣2|,

(1)求函數(shù)f(x)的解析式;
(2)在圖中的坐標(biāo)系中作出函數(shù)y=f(x)的圖象,并找出函數(shù)的單調(diào)區(qū)間;
(3)若集合{x|f(x)=a}恰有兩個元素,結(jié)合函數(shù)f(x)的圖象求實數(shù)a應(yīng)滿足的條件.

查看答案和解析>>

同步練習(xí)冊答案