【題目】在四棱柱ABCD-A1B1C1D1中,,平面BB1C1C底面ABCD,點(diǎn)、F分別是線(xiàn)段、BC的中點(diǎn).
(1)求證:AF//平面;
(2)求證:平面BB1C1C⊥平面.
【答案】(1)見(jiàn)解析; (2)見(jiàn)解析.
【解析】
(1)欲證AF//平面,則需證明平行于平面內(nèi)的一條直線(xiàn),根據(jù)題目條件易得邊上的中線(xiàn)與平行,從而得證。
(2)需證面面垂直,則需證明線(xiàn)面垂直,易證邊上的中線(xiàn)垂直于且,該中線(xiàn)垂直于,從而得到線(xiàn)面垂直,得到面面垂直。
(1)方法一:取中點(diǎn),連
分別為中點(diǎn)
為四棱柱
又為的中點(diǎn),
所以四邊形PFAM為平行四邊形
又
,
方法二:取中點(diǎn),連 ,
又,
,
又是四棱柱,
,
,
,
,
,
又,
,又
,又,
(2),,
又,,
,
又,,
而,
又,
, 又
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為6的等邊三角形各切去一個(gè)全等的四邊形,再沿虛線(xiàn)折起,做成一個(gè)無(wú)蓋的正三棱柱形的容器.
(1)若這個(gè)容器的底面邊長(zhǎng)為,容積為,寫(xiě)出關(guān)于的函數(shù)關(guān)系式并注明定義域;
(2)求這個(gè)容器容積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四個(gè)實(shí)數(shù)根,則t的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(I)求函數(shù)在點(diǎn)(1,0)處的切線(xiàn)方程;
(II)設(shè)實(shí)數(shù)k使得f(x)< kx恒成立,求k的范圍;
(III)設(shè)函數(shù),求函數(shù)h(x)在區(qū)間上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x﹣)x,則下列結(jié)論中正確的是( )
A.若﹣3≤m<n,則f(m)<f(n)
B.若m<n≤0,則f(m)<f(n)
C.若f(m)<f(n),則m2<n2
D.若f(m)<f(n),則m3<n3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y2=2px(p>0)上一點(diǎn)P(3,t)到其焦點(diǎn)的距離為4.
(1)求p的值;
(2)過(guò)點(diǎn)Q(1,0)作兩條直線(xiàn)l1 , l2與拋物線(xiàn)分別交于點(diǎn)A、B和C、D,點(diǎn)M,N分別是線(xiàn)段AB和CD的中點(diǎn),設(shè)直線(xiàn)l1 , l2的斜率分別為k1 , k2 , 若k1+k2=3,求證:直線(xiàn)MN過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的長(zhǎng)軸長(zhǎng)為6,且橢圓與圓: 的公共弦長(zhǎng)為.
(1)求橢圓的方程.
(2)過(guò)點(diǎn)作斜率為的直線(xiàn)與橢圓交于兩點(diǎn), ,試判斷在軸上是否存在點(diǎn),使得為以為底邊的等腰三角形.若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD滿(mǎn)足AD∥BC,BA=AD=DC=BC=a,E是BC的中點(diǎn),將△BAE沿AE折起到△B1AE的位置,使平面B1AE⊥平面AECD,F(xiàn)為B1D的中點(diǎn).
(1)證明:B1E∥平面ACF;
(2)求平面ADB1與平面ECB1所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|,當(dāng)a<b<c時(shí),f(a)>f(c)>f(b),那么正確的結(jié)論是( 。
A.2a>2b
B.2a>2c
C.2﹣a<2c
D.2a+2c<2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com