求證:
cos2α
cot
α
2
-tan
α
2
=
1
4
sin2α.
考點:同角三角函數(shù)基本關(guān)系的運用,二倍角的正弦
專題:三角函數(shù)的求值
分析:要證等式左邊分母利用同角三角函數(shù)間的基本關(guān)系及萬能公式變形,約分后利用二倍角的正弦函數(shù)公式化簡得到結(jié)果與右邊相等,得證.
解答: 證明:左邊=
cos2α
1+cosα
sinα
-
1-cosα
sinα
=
sinαcos2α
2cosα
=
1
2
sinαcosα=
1
4
sin2α=右邊,
則原式成立.
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,以及二倍角的正弦函數(shù)公式,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)符號[x]表示不超過x的最大整數(shù),則方程sinπx=[
x
2
-[
x
2
]+
1
2
]在區(qū)間(0,π)內(nèi)的所有實數(shù)根之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)對任意x都有f(x+3)=-f(x).則函數(shù)f(x)周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:m<1,命題q:函數(shù)f(x)=|x+3|+|x-m|+3+log2(4+m)在區(qū)間(0,+∞)為增函數(shù),則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
f(x)
x
在(m,+∞)上為增函數(shù)(m為常數(shù)),則稱f(x)為區(qū)間(m,+∞)上的“一階比增函數(shù)”,(m,+∞)為f(x)的一階比增區(qū)間.
(1)若f(x)=xlnx-2ax2是(0,+∞)上的“一階比增函數(shù)”,求實數(shù)a的取值范圍;
(2)若f(x)=λx3-xlnx-x2  (λ>0,λ為常數(shù)),且g(x)=
f(x)
x
有唯一的零點,求f(x)的“一階比增區(qū)間”;
(3)若f(x)是(0,+∞)上的“一階比增函數(shù)”,求證:?x1,x2∈(0,+∞),f(x1)+f(x2)<f(x1+x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形ABC中,內(nèi)角A,B,C所對邊a,b,c成公比小于1的等比數(shù)列,且sinB+sin(A-C)=2sin2C.
(1)求內(nèi)角B的余弦值;
(2)若b=
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第三象限的角且f(α)=
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-3π).

(1)化簡f(α);
(2)若cos(α-
3
2
π
)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,且2cosAcosC+1=2sinAsinC.
(Ⅰ)求B的大;
(Ⅱ)若a+c=
3
3
2
b=
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,sinA•sinB=cosA•cosB,則△ABC是
 

查看答案和解析>>

同步練習冊答案