【題目】下列命題中正確的是(
A.若命題p為真命題,命題q為假命題,則命題“p且q”為真命題
B.“ ”是“ ”的充分不必要條件
C.l為直線,α,β,為兩個不同的平面,若l⊥α,α⊥β,則l∥β
D.命題“?x∈R,2x>0”的否定是“?x0∈R, ≤0”

【答案】D
【解析】解:若命題p為真命題,命題q為假命題,則命題“p且q”為假命題,故A錯誤; 由 ,不一定有 ,反之,由 ,一定得到
∴“ ”是“ ”的必要不充分條件,故B錯誤;
l為直線,α,β,為兩個不同的平面,若l⊥α,α⊥β,則l∥β或lβ,故C錯誤;
命題“x∈R,2x>0”的否定是“x0∈R, ≤0”,故D正確.
故選:D.
【考點精析】解答此題的關鍵在于理解命題的真假判斷與應用的相關知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某班主任對全班50名學生學習積極性和對待班級工作的態(tài)度進行了調查,統(tǒng)計數(shù)據(jù)如下表所示:

積極參加班級工作

不太主動參加班級工作

合計

學習積極性高

18

7

25

學習積極性一般

6

19

25

合計

24

26

50


(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法點撥:學生的學習積極性與對待班級工作的態(tài)度是否有關系?并說明理由.(參考下表)

p(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.789

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|,則與y=f(x)相等的函數(shù)是( )
A.g(x)=x﹣1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
(Ⅰ)求 的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移 個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 與直線 相切.
(1)求圓 的方程;
(2)過點 的直線 截圓所得弦長為 ,求直線 的方程;
(3)設圓 軸的負半軸的交點為 ,過點 作兩條斜率分別為 的直線交圓 兩點,且 ,證明:直線 恒過一個定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在 中,內角 , 所對的邊分別為 , , ,已知 , .
(1)當 時,求 的面積;
(2)求 周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 , ,函數(shù) , .
(1)若 的最小值為-1,求實數(shù) 的值;
(2)是否存在實數(shù) ,使函數(shù) , 有四個不同的零點?若存在,求出 的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: 的上頂點M與左、右焦點F1、F2構成三角形MF1F2面積為 ,又橢圓C的離心率為
(1)求橢圓C的方程;
(2)橢圓C的下頂點為N,過點T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點.若△TMN的面積是△TEF的面積的k倍,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設圓上的點A(2,3)關于直線x+2y=0的對稱點仍在圓上,且與直線x﹣y+1=0相交的弦長為2 ,求圓的方程.

查看答案和解析>>

同步練習冊答案