【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法點(diǎn)撥:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?并說明理由.(參考下表)
p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.789 | 10.828 |
【答案】
(1)解:積極參加班級(jí)工作的學(xué)生有24人,總?cè)藬?shù)為50人,概率為 ;
不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生有19人,概率為
(2)解:k2= = ≈11.5,
∵K2>6.635,
∴有99%的把握說學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān)系
【解析】(1)是一古典概型問題,把基本事件的總數(shù)與滿足要求的個(gè)數(shù)找出來,代入古典概率的計(jì)算公式即可.(2)是獨(dú)立性檢驗(yàn)的應(yīng)用,由題中的數(shù)據(jù),計(jì)算出k2與臨界值比較即可得出結(jié)論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),(x∈R,A>0,ω>0,|φ|< )的部分圖象如圖所示:
(1)試確定f(x)的解析式;
(2)若f( )= ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:f1(x)=f(x),當(dāng)n≥2且x∈N*時(shí),fn(x)=f(fn﹣1(x)),對(duì)于函數(shù)f(x)定義域內(nèi)的x0 , 若正在正整數(shù)n是使得fn(x0)=x0成立的最小正整數(shù),則稱n是點(diǎn)x0的最小正周期,x0稱為f(x)的n~周期點(diǎn),已知定義在[0,1]上的函數(shù)f(x)的圖象如圖,對(duì)于函數(shù)f(x),下列說法正確的是(寫出所有正確命題的編號(hào))
①1是f(x)的一個(gè)3~周期點(diǎn);
②3是點(diǎn) 的最小正周期;
③對(duì)于任意正整數(shù)n,都有fn( )= ;
④若x0∈( ,1],則x0是f(x)的一個(gè)2~周期點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果定義在R上的函數(shù)f(x),對(duì)任意的x∈R,都有f(﹣x)≠﹣f(x),則稱該函數(shù)是“β函數(shù)”.
(Ⅰ) 分別判斷下列函數(shù):①y=2x;②y=2x+1; ③y=x2﹣2x﹣3,是否為“β函數(shù)”?(直接寫出結(jié)論)
(Ⅱ) 若函數(shù)f(x)=sinx+cosx+a是“β函數(shù)”,求實(shí)數(shù)a的取值范圍;
(Ⅲ) 已知f(x)= 是“β函數(shù)”,且在R上單調(diào)遞增,求所有可能的集合A與B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E為PD中點(diǎn).
(1)求證:PB∥平面ACE;
(2)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商人如果將進(jìn)貨單價(jià)為 元的商品按每件 元出售,則每天可銷售 件,現(xiàn)在他采用提高售價(jià),減少進(jìn)貨量的辦法增加利潤.已知這種商品每件銷售價(jià)提高 元,銷售量就要減少 件,如果使得每天所賺的利潤最大,那么他應(yīng)將每件的銷售價(jià)定為( )
A. 元
B. 元
C. 元
D. 元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:a∈R,且a>0,a+ ≥2,命題q:x0∈R,sinx0+cosx0= ,則下列判斷正確的是( )
A.p是假命題
B.q是真命題
C.(¬q)是真命題
D.(¬p)∧q是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的有( ) (1.)很小的實(shí)數(shù)可以構(gòu)成集合;
(2.)集合{y|y=x2﹣1}與集合{(x,y)|y=x2﹣1}是同一個(gè)集合;
(3.) 這些數(shù)組成的集合有5個(gè)元素;
(4.)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限內(nèi)的點(diǎn)集.
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.若命題p為真命題,命題q為假命題,則命題“p且q”為真命題
B.“ ”是“ ”的充分不必要條件
C.l為直線,α,β,為兩個(gè)不同的平面,若l⊥α,α⊥β,則l∥β
D.命題“?x∈R,2x>0”的否定是“?x0∈R, ≤0”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com