通過隨機(jī)詢問36名不同性別的大學(xué)生在購買食品時(shí)是否看營養(yǎng)說明,得到如下的列聯(lián)表:
總計(jì)
看營養(yǎng)說明81422
不看營養(yǎng)說明10414
總計(jì)181836
利用列聯(lián)表的獨(dú)立性檢驗(yàn)估計(jì)看營養(yǎng)說明是否與性別有關(guān)?
參考數(shù)據(jù)當(dāng)Χ2≤2.706時(shí),無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián);
當(dāng)Χ2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).
(參考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:求出Χ2的觀測值,與參考數(shù)據(jù)比較,即可得出結(jié)論.
解答: 解:Χ2=
36×(8×4-10×14)2
22×14×18×18
≈4.208>3.841
,
故有95%的把握說性別和看營養(yǎng)說明之間有關(guān)系.
點(diǎn)評(píng):本題主要考察讀圖表、獨(dú)立性檢驗(yàn)等基礎(chǔ)知識(shí),考查運(yùn)用概率統(tǒng)計(jì)知識(shí)解決簡單實(shí)際問題的能力,數(shù)據(jù)處理能力和應(yīng)用意識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項(xiàng)公式是an=(2n-5)(
1
2
n,且an≤an0,則n0=( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y=a與圓x2+y2=3交于A、B兩點(diǎn),O為原點(diǎn),若
OA
OB
=2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-2ax2+bx+c.
(Ⅰ)當(dāng)c=0時(shí),f(x)的圖象在點(diǎn)(1,3)處的切線平行于直線y=x+2,求a,b的值;
(Ⅱ)當(dāng)f(x)無極值時(shí),a,b要滿足什么條件?
(Ⅲ)當(dāng)a=
3
2
,b=-9時(shí),f(x)在點(diǎn)A,B處有極值,O為坐標(biāo)原點(diǎn),若A,B,O三點(diǎn)共線,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(a+1)lnx+ax2+1,
(1)a=0時(shí),若x∈[1,+∞)有f(x)-m≥0,求實(shí)數(shù)m的取值范圍;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)設(shè)a≤-2,證明:對(duì)任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
sinx,m+cosx),
b
=(cosx,-m+cosx),且f(x)=
a
b
,其中m為常數(shù).
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈R,求f(x)的遞增區(qū)間;
(3)當(dāng)x∈[-
π
6
π
3
]時(shí),f(x)的最小值是-4,求此時(shí)函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2-ax,a∈R.
(Ⅰ)若a=3,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩個(gè)極值點(diǎn)x1、x2,記過點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線的斜率為k,問是否存在a,使k=
2
a
-
a
2
?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x+2=0},B={x|x2-mx+2=0}若A∩B=B,求實(shí)數(shù)m的值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R+,比較
1
x
+
1
y
y
x2
+
x
y2
的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案