15.函數(shù)f(x)在[a,b]上有定義,若對(duì)象x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,3]上具有性質(zhì)P.現(xiàn)給出如下結(jié)論:
①f(x)=2x2,在[1,3]上具有性質(zhì)P;
②f(x2)在[1,$\sqrt{3}$]上具有性質(zhì)P;
③f(x)在[1,3]上的圖象是連續(xù)不斷的;
④若f(x)在x=2處取得最大值1,則f(x)=1,x∈[1,3];
其中正確結(jié)論的序號(hào)是①④.

分析 ①根據(jù)定義,直接求出f($\frac{{x}_{1}+{x}_{2}}{2}$),$\frac{1}{2}$[f(x1)+f(x2)],比較即可;
②③可通過(guò)反例說(shuō)明不成立;
④中構(gòu)造1=f(2)=f($\frac{x+(4-x)}{2}$)≤$\frac{1}{2}$(f(x)+f(4-x)),結(jié)合定義可得出f(x)只能為1才滿足題意.

解答 解:①f(x)=2x2,x1,x2∈[1,3],
∴f($\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{({x}_{1}+{x}_{2})^{2}}{2}$,$\frac{1}{2}$[f(x1)+f(x2)]=${{x}_{1}}^{2}$+${{x}_{2}}^{2}$,
顯然有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],故在[1,3]上具有性質(zhì)P,故正確;
②中,反例:f(x)=-x在[1,3]上滿足性質(zhì)P,但f(x2)=-x2在[1,3]上不滿足性質(zhì)P,故②錯(cuò)誤;
③中,反例:f(x)=$(\frac{1}{2})^{x}$,1≤x<3;f(x)=2,x=3在[1,3]上滿足性質(zhì)P,但f(x)在[1,3]上不是連續(xù)函數(shù),故③不成立;
④中f(x)在x=2處取得最大值1,
∵1=f(2)=f($\frac{x+(4-x)}{2}$)≤$\frac{1}{2}$(f(x)+f(4-x)),
∴f(x)+f(4-x)≥2,
∵f(x)≤1,f(4-x)≤1,
∴f(x)=1,x∈[1,3],故正確;
故答案為①④.

點(diǎn)評(píng) 考查了新定義類型的抽象函數(shù),應(yīng)緊扣定義,可用反例法排除選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.$\sqrt{5}+1$與$\sqrt{5}-1$兩數(shù)的等比中項(xiàng)是(
A.2B.-2C.±2D.以上均不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若變量y與x之間的相關(guān)系數(shù)r=-0.9362,查表得到相關(guān)系數(shù)臨界值r0.05=0.8013,則變量y與x之間( 。
A.不具有線性相關(guān)關(guān)系B.具有線性相關(guān)關(guān)系
C.它們的線性關(guān)系還要進(jìn)一步確定D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn=10n-n2.求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若0<x<y,則下列各式正確的是( 。
A.x3<y3B.log${\;}_{\frac{1}{3}}$x<log${\;}_{\frac{1}{3}}$y
C.($\frac{1}{3}$)x$<(\frac{1}{3})^{y}$D.$\frac{3}{x}<\frac{3}{y}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.不等式|3x-1|≥2的解集為(-∞,-$\frac{1}{3}$]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知a=2,b=3,C=60°,
(Ⅰ)求邊長(zhǎng)c和△ABC的面積;
(Ⅱ)求sin2A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖是11月6日下午高安二中紅歌會(huì)比賽中七位評(píng)委為某班級(jí)打出的分?jǐn)?shù)的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分后所剩數(shù)據(jù)的平均分為85分,則$\frac{8}{a}+\frac{32}$的最小值為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.a(chǎn),b,c分別表示三條直線,M表示平面,給出下列四個(gè)命題:①若a∥M,b∥M,則a∥b;②若b?M,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥b,a⊥M,則b∥M;⑤若a?M,b∥M,a∥b,則a∥M
其中正確命題的有⑤(只填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案