【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)時,,現(xiàn)已畫出函數(shù)在y軸左側(cè)的圖象,如圖所示,請根據(jù)圖象.
(1)將函數(shù)的圖象補充完整,并寫出函數(shù)的遞增區(qū)間;
(2)寫出函數(shù)的解析式;
(3)若函數(shù),求函數(shù)的最小值.
【答案】(1)圖象見解析,的單調(diào)遞增區(qū)間為,;(2);(3);
【解析】
(1)根據(jù)偶函數(shù)的圖象關(guān)于軸對稱,可作出的圖象,由圖象可得的單調(diào)遞增區(qū)間;
(2)令,則,根據(jù)條件可得,利用函數(shù)是定義在上的偶函數(shù),可得,從而可得函數(shù)的解析式;
(3)先求出拋物線對稱軸,然后分當(dāng)時,當(dāng)時,當(dāng)時三種情況,根據(jù)二次函數(shù)的增減性解答.
解:(1)如圖,
根據(jù)偶函數(shù)的圖象關(guān)于軸對稱,可作出的圖象,
則的單調(diào)遞增區(qū)間為,;
(2)令,則,
函數(shù)是定義在上的偶函數(shù),
函數(shù)解析式為
(3),對稱軸為,
當(dāng),即時,在上單調(diào)遞增,;
當(dāng),即時,;
當(dāng),即時,在上單調(diào)遞減,;
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為x(x12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費最小值是多少?
(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,坐標(biāo)原點為.橢圓的動弦過右焦點且不垂直于坐標(biāo)軸, 的中點為,過且垂直于線段的直線交射線于點
(I)證明:點在直線上;
(Ⅱ)當(dāng)四邊形是平行四邊形時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車的店,對最近100份分期付款購車情況進(jìn)行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級舉辦了一次數(shù)學(xué)史知識競賽活動,共有名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果見下表.請你根據(jù)頻率分布表解答下列問題:
(1)填出頻率分布表中的空格;
(2)為鼓勵更多的學(xué)生了解“數(shù)學(xué)史”知識,成績不低于分的同學(xué)能獲獎,請估計在參加的名學(xué)生中大概有多少名學(xué)生獲獎?
(3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線經(jīng)過點,其傾斜角為,以原點為極點,以軸為非負(fù)半軸為極軸,與坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.
(1)若直線與曲線有公共點,求傾斜角的取值范圍;
(2)設(shè)為曲線上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個正三棱柱的三視圖如圖所示,若該三棱柱的外接球的表面積為,則側(cè)視圖中的的值為 ( )
A. 6 B. 4 C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 ;在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(1)若a=1,求C與l交點的直角坐標(biāo);
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com