【題目】求下列函數(shù)的最大值和最小值:

1

2;

3;

4.

【答案】1,無最大值;(2, ;(3 ,;(4,無最小值

【解析】

對(duì)于(1),利用換元法,然后利用二次函數(shù)的單調(diào)性判斷即可.

對(duì)于(2),利用對(duì)勾函數(shù)的性質(zhì)進(jìn)行判斷即可.

對(duì)于(3),利用函數(shù)的運(yùn)算關(guān)系即可得的單調(diào)性,進(jìn)而可直接求解

對(duì)于(4),令,,然后化簡(jiǎn)得,進(jìn)而利用對(duì)勾函數(shù)的性質(zhì)即可求解.

對(duì)于(1,當(dāng)時(shí)成立,令,故,

,故當(dāng)時(shí),,無最大值.

對(duì)于(2;該函數(shù)為對(duì)勾函數(shù),當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增,故當(dāng)時(shí),,當(dāng)時(shí),;

對(duì)于(3,整理為,明顯地,這是兩個(gè)增函數(shù)相加,所以,對(duì)于,在上單調(diào)遞增,所以,當(dāng)時(shí),,當(dāng)時(shí),

對(duì)于(4,因?yàn)?/span>,所以,令,則,故可化簡(jiǎn)為:,明顯地,,當(dāng)時(shí),即時(shí),,該函數(shù)在時(shí)無最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCD為菱形,∠ABC60°,△PAB是邊長(zhǎng)為2的等邊三角形,點(diǎn)MAB的中點(diǎn),將△PAB沿AB邊折起,使平面PAB⊥平面ABCD,連接PC、PD,如圖2,

1)證明:ABPC;

2)求PD與平面ABCD所成角的正弦值

3)在線段PD上是否存在點(diǎn)N,使得PB∥平面MC?若存在,請(qǐng)找出N點(diǎn)的位置;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=(x-2)ex+a(x-1)2,討論f (x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鋼管生產(chǎn)車間生產(chǎn)一批鋼管,質(zhì)檢員從中抽出若干根對(duì)其直徑(單位: )進(jìn)行測(cè)量,得出這批鋼管的直徑 服從正態(tài)分布.

(1)當(dāng)質(zhì)檢員隨機(jī)抽檢時(shí),測(cè)得一根鋼管的直徑為,他立即要求停止生產(chǎn),檢查設(shè)備,請(qǐng)你根據(jù)所學(xué)知識(shí),判斷該質(zhì)檢員的決定是否有道理,并說明判斷的依據(jù);

(2)如果鋼管的直徑滿足為合格品(合格品的概率精確到0.01),現(xiàn)要從60根該種鋼管中任意挑選3根,求次品數(shù)的分布列和數(shù)學(xué)期望.

(參考數(shù)據(jù):若,則; .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:;

(3)試比較 ,并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,組成一個(gè)樣本的抽樣方法;在《九章算術(shù)》第三章“衰分”中有如下問題:“今有甲持錢五百六十,乙持錢三百五十,丙持錢一百八十,凡三人俱出關(guān),關(guān)稅百錢.欲以錢多少衰出之,問各幾何?”其譯文為:今有甲持560錢,乙持350錢,丙持180錢,甲、乙、丙三人一起出關(guān),關(guān)稅共100錢,要按照各人帶錢多少的比例進(jìn)行交稅,問三人各應(yīng)付多少稅?則下列說法錯(cuò)誤的是( )

A. 甲應(yīng)付 B. 乙應(yīng)付

C. 丙應(yīng)付 D. 三者中甲付的錢最多,丙付的錢最少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)

某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,……,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為4/件,假定甲、乙兩廠得產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)

I)已知甲廠產(chǎn)品的等級(jí)系數(shù)X1的概率分布列如下所示:

X1的數(shù)字期望EX1=6,求a,b的值;

II)為分析乙廠產(chǎn)品的等級(jí)系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:

3 5 3 3 8 5 5 6 3 4

6 3 4 7 5 3 4 8 5 3

8 3 4 3 4 4 7 5 6 7

用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級(jí)系數(shù)X2的數(shù)學(xué)期望.

在(I)、(II)的條件下,若以性價(jià)比為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購(gòu)買性?說明理由.

注:(1)產(chǎn)品的性價(jià)比”=;

2性價(jià)比大的產(chǎn)品更具可購(gòu)買性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,其中.

1)求及數(shù)列的通項(xiàng)公式;

2)若為整數(shù),且對(duì)任意的,恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(x,y)在△ABC的邊界和內(nèi)部運(yùn)動(dòng),其中A(1,0),B(2,1)C(4,4).z=2x-y的最小值為M,最大值為N.

1)求M,N

2)若m+n=M,m>0n>0,求的最小值,并求此時(shí)的m,n的值;

3)若m+n+mn=N,m>0,n>0,求mn的最大值和m+n的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案