13.閱讀如圖的程序框圖,當(dāng)該程序運(yùn)行后輸出的x值是16.

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的S,k的值,當(dāng)S=259時(shí),不滿足條件S<100,退出循環(huán),計(jì)算并輸出x=16.

解答 解:模擬執(zhí)行程序框圖,可得
S=1,k=1
滿足條件S<100,S=3,k=2
滿足條件S<100,S=11,k=3
滿足條件S<100,S=35,k=4
滿足條件S<100,S=99,k=5
滿足條件S<100,S=259,k=6
不滿足條件S<100,退出循環(huán),計(jì)算并輸出x=16.
故答案為:16.

點(diǎn)評 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,對循環(huán)體每次循環(huán)需要進(jìn)行分析并找出內(nèi)在規(guī)律.本題屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知正四棱柱ABCD-A1B1C1D1的底面邊長AB=6,側(cè)棱長AA1=2$\sqrt{7}$,它的外接球的球心為O,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是球O上任意一點(diǎn),有以下判斷:
①PE的長的最大值為9;
②三棱錐P-EBC的體積的最大值是$\frac{32}{3}$;
③三棱錐P-AEC1的體積的最大值是20;
④過點(diǎn)E的平面截球O所得截面面積最大時(shí),B1C垂直于該截面.
正確的命題是( 。
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,“A>B”是“cos2($\frac{A}{2}$+$\frac{π}{4}$)<cos2($\frac{B}{2}$+$\frac{π}{4}$)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給四面體ABCD的六條棱分別涂上紅,黃,藍(lán),綠四種顏色中的一種,使得有公共頂點(diǎn)的棱所涂的顏色互不相同,則不同的涂色方法共有( 。
A.96B.144C.240D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$為n個(gè)正數(shù)p1,p2,…,pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,則$\frac{1}{_{1}_{2}}+\frac{1}{_{2}_{3}}+…+\frac{1}{_{9}_{10}}$=( 。
A.$\frac{1}{11}$B.$\frac{9}{10}$C.$\frac{10}{11}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某程序框圖如圖所示,該程序運(yùn)行后輸出的結(jié)果為( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.曲線y=$\sqrt{1-{x}^{2}}$+1上存在不同的兩點(diǎn)關(guān)于直線l對稱,則直線l的方程可以是(  )
A.y=-3x+4B.y=xC.y=-x+2D.y=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在邊長為2的正方形ABCD中,E,F(xiàn)分別為BC和DC的中點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$=( 。
A.$\frac{5}{2}$B.$\frac{3}{2}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)變量x、y滿足約束條件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最大值為(  )
A.11B.10C.9D.12

查看答案和解析>>

同步練習(xí)冊答案