【題目】定義在封閉的平面區(qū)域D內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域D直徑".已知銳角三角形的三個(gè)頂點(diǎn)A,B,C在半徑為1的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域D,則平面區(qū)域D直徑______.

【答案】

【解析】

由兩圓上點(diǎn)的距離的最大值為圓心距加上兩圓半徑可得平面區(qū)域D直徑就是三個(gè)圓的半徑之和,也即三角形周長(zhǎng)的一半,由正弦定理得,由余弦定理結(jié)合基本不等式可得的最大值,從而可得結(jié)論.

如圖所示,設(shè)三個(gè)半圓的圓心分別為G,F,E,半徑分別為,,,M,P,N分別為半圓上的動(dòng)點(diǎn),

連接PM,MG,GF,FP,設(shè)的三個(gè)內(nèi)角,,的對(duì)邊分別為,,.,

當(dāng)且僅當(dāng)M,G,FP共線時(shí)取等號(hào),同理可得,因?yàn)?/span>外接圓的半徑為1

,所以.中,由余弦定理,可知,即,解得,當(dāng)且僅當(dāng)時(shí)取等號(hào).

所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故平面區(qū)域D直徑.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】—只螞蟻在三邊長(zhǎng)分別為,,的三角形內(nèi)自由爬行,某時(shí)刻該螞蟻距離三角形的任意一個(gè)頂點(diǎn)的距離不超過的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1,EBC的中點(diǎn).

(1)求證:AEB1C

(2)若GC1C中點(diǎn),求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處的切線經(jīng)過坐標(biāo)原點(diǎn),求的值;

(2)若存在極小值,使不等式恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左、右焦點(diǎn)分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓.

(1)求橢圓的方程;

(2)過橢圓上一動(dòng)點(diǎn)的直線,過F2x軸垂直的直線記為,右準(zhǔn)線記為;

設(shè)直線與直線相交于點(diǎn)M,直線與直線相交于點(diǎn)N,證明恒為定值,并求此定值。

若連接并延長(zhǎng)與直線相交于點(diǎn)Q,橢圓的右頂點(diǎn)A,設(shè)直線PA的斜率為,直線QA的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)存在兩個(gè)極值點(diǎn),,且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

討論的單調(diào)性;

,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濱海市政府今年加大了招商引資的力度,吸引外資的數(shù)量明顯增加.一外商計(jì)劃在濱海市投資兩個(gè)項(xiàng)目,總投資20億元,其中甲項(xiàng)目的10年收益額(單位:億元)與投資額(單位:億元)滿足,乙項(xiàng)目的10年收益額(單位:億元)與投資額(單位:億元)滿足,并且每個(gè)項(xiàng)目至少要投資2億元.設(shè)兩個(gè)項(xiàng)目的10年收益額之和為.

(1)求

(2)如何安排甲、乙兩個(gè)項(xiàng)目的投資額,才能使這兩個(gè)項(xiàng)目的10年收益額之和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.設(shè)線段的中點(diǎn)上的投影為,則的最大值是_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案