【題目】已知橢圓過點,離心率為.若是橢圓上的不同的兩點, 的面積記為.
(I)求橢圓的方程;
(II)設直線的方程為, , ,求的值;
(III)設直線, 的斜率之積等于,試證明:無論如何移動,面積保持不變.
【答案】(I);(II);(III)詳見解析.
【解析】試題分析:(I)利用列方程,求出的值,由此得到橢圓方程.(II)聯(lián)立直線的方程和橢圓方程,求得交點坐標,利用點到直線距離公式求得三角形的高,由此得到三角形面積的表達式,并由此求得的值.(III)設出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理,代入向量運算,利用弦長公式和點到直線距離公式求得面積的表達式,化簡得到面積保持不變.
試題解析:
(I)由題知,
解得,
所以橢圓的方程為.
(II)法1:由得點到直線的距離所以的面積即解得
(III)橢圓方程為,
過兩點的直線的方程,其中, ,
則,
得,
,,
因為,
所以.
則,
坐標原點到直線的距離為,
所以,
所以無論如何移動,面積保持不變. 的值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD為矩形,PA⊥平面ABCD,點E是棱PD的中點,點F是PC的中點F.
(1)證明:PB∥平面AEC;
(2)若ABCD為正方形,探究在什么條件下,二面角C﹣AF﹣D大小為60°?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于直徑為BC的圓O,過點A作圓O的切線交CB的延長線于點P,∠BAC的平分線分別交BC和圓O于點D、E,若PA=2PB=10.
(1)求證:AC=2AB;
(2)求ADDE的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={|=},B={|<- 4或>2}.
(1) 若m= -2, 求A∩(RB)
(2)若A∪B=B,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在2007全運會上兩名射擊運動員甲、乙在比賽中打出如下成績:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用莖葉圖表示甲,乙兩個成績;并根據(jù)莖葉圖分析甲、乙兩人成績;
(2)分別計算兩個樣本的平均數(shù)和標準差,并根據(jù)計算結果估計哪位運動員的成績比較穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l: (t為參數(shù),α≠0)經(jīng)過橢圓C: (φ為參數(shù))的左焦點F.
(1)求實數(shù)m的值;
(2)設直線l與橢圓C交于A、B兩點,求|FA|×|FB|取最小值時,直線l的傾斜角α.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com