【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2018年某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

1)求出2018年的利潤Lx)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)

22018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

【答案】12生產(chǎn)100百輛時,該企業(yè)獲得利潤最大,且最大利潤為1800萬元.

【解析】

1)根據(jù)利潤的定義,結(jié)合投入成本是分段函數(shù),分類討論求得利潤函數(shù).

2)根據(jù)第一問利潤函數(shù),分兩種情況進(jìn)行分類討論,當(dāng),用二次函數(shù)法求最值,當(dāng),用基本不等式法求最值,然后這兩段中取最大的為函數(shù)的最大值即最大利潤,此時x的取值為最大利潤時的產(chǎn)量.

1)當(dāng)時,;

當(dāng)時,;

2)當(dāng)時,,

∴當(dāng)時,;

當(dāng)時,,

當(dāng)且僅當(dāng),即時,

∴當(dāng)時,即2018年生產(chǎn)100百輛時,該企業(yè)獲得利潤最大,且最大利潤為1800萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為.

(1)求直線與圓相切的概率;

(2)將,,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是圓的直徑,點是圓上異于的點, 垂直于圓所在的平面,且

1)若為線段的中點,求證平面

2)求三棱錐體積的最大值;

3)若,點在線段上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖如果輸入的t0.01,則輸出的n(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018安徽淮南市高三一模(2月)已知函數(shù)

I,討論函數(shù)的單調(diào)性;

II曲線與直線交于, 兩點,其中,若直線斜率為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , .

(1)證明:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的左右焦點,點為其上一點,且有

)求橢圓的標(biāo)準(zhǔn)方程;

)過的直線與橢圓交于兩點,過平行的直線與橢圓交于兩點,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓內(nèi)畫1條線段,將圓分割成兩部分;畫2條相交線段,彼此分割成4條線段,將圓分割成4部分;畫3條線段,彼此最多分割成9條線段,將圓最多分割成7部分;畫4條線段,彼此最多分割成16條線段,將圓最多分割成11部分.那么

(1)在圓內(nèi)畫5條線段,它們彼此最多分割成多少條線段?將圓最多分割成多少部分?

(2)猜想:圓內(nèi)兩兩相交的n條線段,彼此最多分割成多少條線段?

(3)猜想:在圓內(nèi)畫n條線段,兩兩相交,將圓最多分割成多少部分?

并用數(shù)學(xué)歸納法證明你所得到的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐側(cè)面底面,底面為矩形, 中點 , .

(Ⅰ)求證: 平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案