已知點(diǎn)A(1,3),B(3,1),C(-1,0),求△ABC的面積△ABC的面積.
考點(diǎn):點(diǎn)到直線的距離公式,兩點(diǎn)間距離公式的應(yīng)用
專題:直線與圓
分析:由兩點(diǎn)間距離公式可得|AB|,利用點(diǎn)斜式可得直線AB方程,利用點(diǎn)到直線的距離公式可得點(diǎn)C到直線AB的距離h,根據(jù)三角形面積公式可得答案.
解答: 解:設(shè)AB邊上的高為h,則S△ABC=
1
2
|AB|•h.
|AB|=
(1-3)2+(3-1)2
=2
2
,
AB邊上的高h(yuǎn)就是點(diǎn)C到AB的距離.
AB邊所在的直線方程為x+y-4=0.
點(diǎn)C(-1,0)到x+y-4=0的距離h=
5
2
=
5
2
2
,
因此,S△ABC=
1
2
×2
2
×
5
2
2
=5.
點(diǎn)評:本題考查三角形面積公式、兩點(diǎn)間距離公式、點(diǎn)到直線的距離公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c是周長不超過2π的三角形邊長,判斷sina,sinb,sinc能否構(gòu)成三角形?請分類討論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a+b=
2
3
,ab=2,求下列代數(shù)式的值
(1)a2b+2a2b2+ab2;
(2)a2+b2
(3)a3+b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(m-1)x+1.
(Ⅰ)若方程f(x)=0有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<0的解集為(x1,x2),且0<|x1-x2|<2
3
,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x∈Z|-2≤x≤6},集合A={-1,0,1},B={x∈U|2x+3≤x2}.
求(Ⅰ)A∩B;
(Ⅱ)∁U(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩位同學(xué)參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲 82  81  79  78  95  88  93  84
乙 92  95  80  75  83  80  90  85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?
(3)若將頻率視為概率,求甲同學(xué)在今后的數(shù)學(xué)競賽成績高于80的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)f(x)=
1-log6x
的定義域;
(2)求函數(shù)y=
2x-1
x-1
的值域;
(3)化簡
416x8y4
(x<0,y<0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-2<x<3},B={x|
4
x+3
>1}.
(1)求集合A∩B;
(2)若不等式2ax2-2bx+3a2b<0的解集為B,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(x+φ)+cos(x+φ)(|φ|<
π
2
)為偶函數(shù),則φ=
 

查看答案和解析>>

同步練習(xí)冊答案