如圖,正方體ABCD-A1B1C1D1中,異面直線BC1和CD1所成角為( 。
A、
π
6
B、
π
3
C、
π
4
D、
π
2
考點:異面直線及其所成的角
專題:空間角
分析:建立空間直角坐標系,利用坐標法求異面直線所成的角.
解答: 解:以B為原點,BA,BC,BB1所在直線分別為x,y,z軸,建立空間直角坐標系,設(shè)正方體棱長為1,則B(0,0,0),C(0,1,0),C1(0,1,1),D1(1,1,1),
所以
BC1
=(0,1,1),
CD1
=(1,0,1),
并且BC1=
2
,CD1=
2
,
所以
BC1
CD1
=
BC1
CD1
|
BC1
||
CD1
|
=
1
2
,
所以異面直線BC1和CD1所成角
π
3
;
故選B.
點評:本題借助于向量的數(shù)量積求異面直線所成的角,正確建立空間直角坐標系,明確對應(yīng)向量的坐標是關(guān)鍵.
另外:本題可以連接AD1,AC,得到△ACD1是等邊三角形,而角AD1C是異面直線BC1和CD1所成角,從而得到答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知lna+lnb=2ln(a-2b),則log2
a
b
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
3
2
,且內(nèi)切于圓x2+y2=9.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(1,0)作直線l(不與x軸垂直)與該橢圓交于M,N兩點,與y軸交于點R,若
RM
MQ
,
RN
NQ
,試判斷λ+μ是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{x,xy,lg(xy)}={0,|x|,y},求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點
(Ⅰ)求證:直線BD1⊥AC;
(Ⅱ)求異面直線BD1與CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
=(
3
,1),
b
=(-2
3
,2)
,則
a
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,點M,N在棱CC1,BB1上,且CM=B1N,則四棱錐A-BCMN的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點A、B的極坐標分別為(1 , 
π
3
)
(3 , 
3
)
,曲線C的參數(shù)方程為
x=rcosα
y=rsinα
為參數(shù)).
(Ⅰ)求直線AB的直角坐標方程;
(Ⅱ)若直線AB和曲線C只有一個交點,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知長方體ABCD-A1B1C1D1中,AB=BC=1,BB1=2,連結(jié)BC1,過點B1作BC1的垂線交CC1于E.
(1)求證:AC1⊥平面EB1D1;
(2)二面角E-B1D1-C1的正切值.

查看答案和解析>>

同步練習(xí)冊答案