某產(chǎn)品在不做廣告宣傳且每千克獲利a元的前提下,可賣出b千克.若做廣告宣傳,廣告費(fèi)為n千元時(shí)比廣告費(fèi)為(n-1)千元時(shí)多賣出
b2n
千克,(n∈N*).記廣告費(fèi)為n千元時(shí),賣出產(chǎn)品數(shù)量為Sn千克.
(1)求S1,S2
(2)求Sn;
(3)當(dāng)a=50,b=200時(shí)廠家應(yīng)生產(chǎn)多少千克這種產(chǎn)品,做幾千元廣告,才能獲利最大?
分析:(1)當(dāng)廣告費(fèi)為1千元時(shí),銷售量s1=b+
1
2
b=
3b
2
s2=
3b
2
+
b
4
=
7b
4
     
(2)設(shè)s0表示廣告費(fèi)為0千元時(shí)的銷售量,即s0=b,s1-s0=
1
2
b
,s2-s1=
b
22
…sn-sn-1=
b
2n
,疊加可求
(3)設(shè)獲利為Tn,則有Tn=asn-1000n=50×200(2-
1
2n
)-1000n
=10000(2-
1
2n
)-1000n,欲使Tn最大,則
TnTn+1
TnTn-1
,代入解不等式可求n
解答:解:(1)當(dāng)廣告費(fèi)為1千元時(shí),銷售量s1=b+
1
2
b=
3b
2
        (2分)
當(dāng)廣告費(fèi)為2千元時(shí),銷售量s2=
3b
2
+
b
4
=
7b
4
     (4分)
(2)設(shè)s0表示廣告費(fèi)為0千元時(shí)的銷售量,即s0=b
由題意得s1-s0=
1
2
b

s2-s1=
b
22


sn-sn-1=
b
2n
,(6分)
以上n個(gè)等式相加得sn-s0=
b
2
+
b
22
+…+
b
2n
 (7分)
即有Sn=b+
b
2
+…+
b
2n
=
b(1-
1
2n+1
)
1-
1
2
=b(2-
1
2n
)
(9分)
(3)當(dāng)a=50,b=200時(shí),設(shè)獲利為Tn,則有Tn=asn-1000n=50×200(2-
1
2n
)-1000n
=10000(2-
1
2n
)-1000n(11分)
欲使Tn最大,則
TnTn+1
TnTn-1
,
20000-
10000
2n
-1000n≥20000-
10000
2n+1
-1000(n+1)
20000-
10000
2n
-1000n≥20000-
10000
2n-1
-1000(n-1)

解可得
n>2
n<4
,故n=3.(13分)
當(dāng)n=3時(shí),s3=375,即廠家應(yīng)生產(chǎn)350千克產(chǎn)品,做3千元的廣告,能獲利最大.(14分)
點(diǎn)評(píng):本題主要考查了數(shù)列的疊加求解通項(xiàng)公式,利用數(shù)列的單調(diào)性求解數(shù)列的最大(。╉(xiàng),解題中要注意函數(shù)思想在解題中的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濱州一模)某產(chǎn)品在不做廣告宣傳且每千克獲利a元的前提下,可賣出b千克.若做廣告宣傳,廣告費(fèi)為n(n∈N*)千元時(shí)比廣告費(fèi)為(n-1)千元時(shí)多賣出
b2n
千克.
(Ⅰ)當(dāng)廣告費(fèi)分別為1千元和2千元時(shí),用b表示銷售量s;
(Ⅱ)試寫出銷售量s與n的函數(shù)關(guān)系式;
(Ⅲ)當(dāng)a=50,b=200時(shí),要使廠家獲利最大,銷售量s和廣告費(fèi)n分別應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某產(chǎn)品在不做廣告宣傳且每千克獲利a元的前提下,可賣出b千克.若做廣告宣傳,廣告費(fèi)為n(n∈N*)千元時(shí)比廣告費(fèi)為(n-1)千元時(shí)多賣出數(shù)學(xué)公式千克.
(Ⅰ)當(dāng)廣告費(fèi)分別為1千元和2千元時(shí),用b表示銷售量s;
(Ⅱ)試寫出銷售量s與n的函數(shù)關(guān)系式;
(Ⅲ)當(dāng)a=50,b=200時(shí),要使廠家獲利最大,銷售量s和廣告費(fèi)n分別應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省肇慶市高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某產(chǎn)品在不做廣告宣傳且每千克獲利a元的前提下,可賣出b千克.若做廣告宣傳,廣告費(fèi)為n千元時(shí)比廣告費(fèi)為(n-1)千元時(shí)多賣出千克,(n∈N*).記廣告費(fèi)為n千元時(shí),賣出產(chǎn)品數(shù)量為Sn千克.
(1)求S1,S2;
(2)求Sn
(3)當(dāng)a=50,b=200時(shí)廠家應(yīng)生產(chǎn)多少千克這種產(chǎn)品,做幾千元廣告,才能獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年山東省濱州市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

某產(chǎn)品在不做廣告宣傳且每千克獲利a元的前提下,可賣出b千克.若做廣告宣傳,廣告費(fèi)為n(n∈N*)千元時(shí)比廣告費(fèi)為(n-1)千元時(shí)多賣出千克.
(Ⅰ)當(dāng)廣告費(fèi)分別為1千元和2千元時(shí),用b表示銷售量s;
(Ⅱ)試寫出銷售量s與n的函數(shù)關(guān)系式;
(Ⅲ)當(dāng)a=50,b=200時(shí),要使廠家獲利最大,銷售量s和廣告費(fèi)n分別應(yīng)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案