【題目】已知圓 , 軸上的動點 分別切圓 兩點.

(1) ,求切線 的方程;

(2),求直線 的方程.

【答案】(1) 的方程分別為

(2) 的方程為

【解析】試題分析:(1)設出切線方程,利用圓心到直線的距離列出方程求解即可:(2)交于點,求出,利用相似三角形 ,,通過求解即可.

試題解析:(1)設過點Q的圓M的切線方程為xmy1,則圓心M到切線的距離為1,

1,m=- 0, 的方程分別為 ...6

(2)ABMQ交于P,則MPABMBBQ,|MP| .RtMBQ中,|MB|2|MP||MQ|,

1 |MQ|,|MQ|3,x2(y2)29.Q(x,0),則x2229,x± Q(± ,0), 的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在下列四個正方體中,為正方體的兩個頂點,為所在棱的中點,則在這四個正方體中,直接與平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調(diào)區(qū)間與極值;

(2)當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:區(qū)域A是正方形OABC(含邊界),區(qū)域B是三角形ABC(含邊界)。

(Ⅰ)向區(qū)域A隨機拋擲一粒黃豆,求黃豆落在區(qū)域B的概率;

(Ⅱ)若x,y分別表示甲、乙兩人各擲一次骰子所得的點數(shù),求點(x,y)落在區(qū)域B的概率;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:3x+2y﹣1=0和l2:5x+2y+1=0的交點為A
(1)若直線l3:(a2﹣1)x+ay﹣1=0與l1平行,求實數(shù)a的值;
(2)求經(jīng)過點A,且在兩坐標軸上截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1= an+t,a1= (t為常數(shù),且t≠ ).
(1)證明:{an﹣2t}為等比數(shù)列;
(2)當t=﹣ 時,求數(shù)列{an}的前幾項和最大?
(3)當t=0時,設cn=4an+1,數(shù)列{cn}的前n項和為Tn , 若不等式 ≥2n﹣7對任意的n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一側,排法種數(shù)為( )

A. 12 B. 40 C. 60 D. 80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓方程,其左焦點、上頂點和左頂點分別為, , ,坐標原點為,且線段, , 的長度成等差數(shù)列.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若過點的一條直線交橢圓于點, ,交軸于點,使得線段被點, 三等分,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在海島A上有一座海拔1千米的山,山頂設有一個觀察站P,上午11時,測得一輪船在島北偏東30°,俯角為30°的B處,到11時10分又測得該船在島北偏西60°,俯角為60°的C處.
(1)求船的航行速度是每小時多少千米?
(2)又經(jīng)過一段時間后,船到達海島的正西方向的D處,問此時船距島A有多遠?

查看答案和解析>>

同步練習冊答案