如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M 在棱AB上,且AM=
1
3
,點(diǎn)P是平面ABCD上的動(dòng)點(diǎn),且動(dòng)點(diǎn)P到直線A1D1的距離與點(diǎn)P到點(diǎn)M 的距離的平方差為2,則動(dòng)點(diǎn)P的軌跡是( 。
A.圓B.拋物線C.雙曲線D.直線

如圖所示:正方體ABCD-A1B1C1D1中,
作PQ⊥AD,Q為垂足,則PQ⊥面ADD1A1,
過點(diǎn)Q作QR⊥D1A1,則D1A1⊥面PQR,
PR即為點(diǎn)P到直線A1D1的距離,
由題意可得 PR2-PQ2=RQ2=4.
又已知 PR2-PM2=4,
∴PM=PQ,
即P到點(diǎn)M的距離等于P到AD的距離,
根據(jù)拋物線的定義可得,點(diǎn)P的軌跡是拋物線,
故選 B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)(0,1)引直線與雙曲線x2-y2=1只有一個(gè)公共點(diǎn),這樣的直線共有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓焦距為2,離心率為
1
2

(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若直線l過點(diǎn)(1,2)且傾斜角為45°且與橢圓相交于A,B兩點(diǎn),求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)A,B∈R,A≠B且AB≠0,則方程Bx-y+A=0和
x2
B
-
y2
A
=1
在同一坐標(biāo)系下的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
4
+
y2
3
=1
,直線l過點(diǎn)M(m,0).
(Ⅰ)若直線l交y軸于點(diǎn)N,當(dāng)m=-1時(shí),MN中點(diǎn)恰在橢圓C上,求直線l的方程;
(Ⅱ)如圖,若直線l交橢圓C于A,B兩點(diǎn),當(dāng)m=-4時(shí),在x軸上是否存在點(diǎn)p,使得△PAB為等邊三角形?若存在,求出點(diǎn)p坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)P是橢圓16x2+25y2=1600上一點(diǎn),且在x軸上方,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),直線PF2的斜率為-4
3
,則△PF1F2的面積為(  )
A.32
3
B.24
3
C.32
2
D.24
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),O是坐標(biāo)原點(diǎn),C的右頂點(diǎn)和上頂點(diǎn)分別為A、B,且△AOB的面積為
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)P(4,0)作與x軸不重合的直線l與C交于相異兩點(diǎn)M、N,交y軸于Q點(diǎn),證明
|PQ|
|PM|
+
|PQ|
|PN|
為定值,并求這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1,F(xiàn)2是橢圓
x2
16
+
y2
9
=1
的兩焦點(diǎn),過點(diǎn)F2的直線交橢圓于A,B兩點(diǎn),在△AF1B中,若有兩邊之和是10,則第三邊的長(zhǎng)度為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的頂點(diǎn)為A1,A2,B1,B2,焦點(diǎn)為F1,F(xiàn)2,|A1B2|=
7
,S?A1B1A2B2=2S?B1F1B2F2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線m過Q(1,1),且與橢圓相交于M,N兩點(diǎn),當(dāng)Q是MN的中點(diǎn)時(shí),求直線m的方程.
(Ⅲ)設(shè)n為過原點(diǎn)的直線,l是與n垂直相交于P點(diǎn)且與橢圓相交于兩點(diǎn)A,B的直線,|
OP
|=1
,是否存在上述直線l使以AB為直徑的圓過原點(diǎn)?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案