如圖,在△ABC中,∠C=45°,D為BC中點(diǎn),BC=2.記銳角∠ADB=α.且滿足cosα=-
7
25

(1)求cos∠CAD;
(2)求BC邊上高的值.
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:(1)由二倍角公式cos2α=2cos2α-1,可求cosα,根據(jù)∠CAD=α-45°,即可求cos∠CAD;
(2)由(1)得,sin∠CAD=sin(α-45°)sinαcos45°-sin45°cosα=
2
10
,再由正弦定理
CD
sin∠CAD
=
AD
sin∠C
,可求AD,從而可由h=ADsin∠ADB求解.
解答: 解:(1)∵cos2α=2cos2α-1,∴cos2α=
9
25
,
∵α∈(0°,45°),∴cosα=
3
5
,
sinα=
4
5
,
∵∠CAD=α-45°,∴cos∠CAD=cos(α-45°)=
2
2
(cosα+sinα)
=
7
2
10

(2)由(1)得,sin∠CAD=sin(α-45°)=sinαcos45°-sin45°cosα=
2
10
,
在△ACD中,由正弦定理得:
CD
sin∠CAD
=
AD
sin∠C
,
∴AD=
CDsinC
sin∠CAD
=
2
2
2
10
=5,
∴高h(yuǎn)=ADsin∠ADB=
4
5
=4.
點(diǎn)評(píng):本題主要考查了同角平方關(guān)系、和差角公式及正弦定理在求解三角形中的應(yīng)用,解題的關(guān)鍵是熟練應(yīng)用基本公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x=
a2
a2+b2
被雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線所截得線段的長(zhǎng)度恰好等于其一個(gè)焦點(diǎn)到漸近線的距離,則此雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知如圖為函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<
π
2
)的部分圖象.
(1)求f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)求函數(shù)g(x)=
f(x)+2
f(x+
π
4
)+2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+b,
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=x+1,求a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)單調(diào)遞減.
(1)求a的取值集合A; 
(2)對(duì)任意a∈A∩[-7,+∞)和x∈[0,4],有f(x)>a2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(1+cosα,1-sinα),參數(shù)α∈R,點(diǎn)Q在曲線C:ρ=
6
2
sin(θ+
π
4
)
上.
(1)求點(diǎn)P的軌跡方程和曲線C的直角坐標(biāo)方程;
(2)求點(diǎn)P與點(diǎn)Q之間距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=2,an-an-1-2n=0,(n≥2,n∈N).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,y(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).
(Ⅰ)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量x的眾數(shù)和中位數(shù)(四舍五入取整數(shù));
(Ⅱ)將y表示為x的函數(shù);
(Ⅲ)根據(jù)直方圖估計(jì)利潤(rùn)y不少于4800元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出以下五個(gè)命題中所有正確命題的編號(hào)
 

①點(diǎn)A(1,2)關(guān)于直線y=x-1的對(duì)稱點(diǎn)B的坐標(biāo)為(3,0);
②橢圓
x2
16
+
y2
9
=1的兩個(gè)焦點(diǎn)坐標(biāo)為(±5,0);
③已知正方體的棱長(zhǎng)等于2,那么正方體外接球的半徑是2
3

④圖1所示的正方體ABCD-A1B1C1D1中,異面直線A1C1與B1C成60°的角;
⑤圖2所示的正方形O′A′B′C′是水平放置的一個(gè)平面圖形的直觀圖,則原圖形是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)fn(x)=lnx-n+5的零點(diǎn)為an(其中n=1,2,3…),數(shù)列{an}的前k項(xiàng)的積為T(mén)k(k>1,k∈N),則滿足Tk=ak的自然數(shù)k的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案