已知⊙O:x2+y2=4上恰有三個(gè)點(diǎn)到直線l:y=x+b的距離都等于1,求b的值及此時(shí)直線l被⊙O截得的弦長(zhǎng).
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:由題意可得圓心到直線的距離等于半徑的一半,即
|0-0+b|
2
=1,由此求得b的值,再利用弦長(zhǎng)公式求得弦長(zhǎng).
解答: 解:已知⊙O:x2+y2=4上恰有三個(gè)點(diǎn)到直線l:y=x+b的距離都等于1,
故圓心到直線的距離d等于半徑的一半,即
|0-0+b|
2
=1,
求得b=±
2
,此時(shí)弦長(zhǎng)為2
r2-d2
=2
4-1
=2
3
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,弦長(zhǎng)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式-x2+x+2≥0的解集是(  )
A、[-1,2]
B、(-∞,-1]∪[2,+∞)
C、[-2,1]
D、(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖所示,則( 。
A、ω=2,φ=
π
6
B、ω=
1
2
,φ=
π
6
C、ω=2,φ=
π
3
D、ω=
1
2
,φ=
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B,∠C所對(duì)的邊分別是a、b、c,不等式x2cosC+4xsinC+6≥0對(duì)一切實(shí)數(shù)x恒成立.
(1)求cosC的取值范圍;
(2)當(dāng)∠C取最大值,且△ABC的周長(zhǎng)為6時(shí),求△ABC面積的最大值,并指出面積取最大值時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為直角頂點(diǎn)的直角三角形OAB的外側(cè)作兩個(gè)正方形OAPQ和OBRS,設(shè)QS的中點(diǎn)為M(本題所有的點(diǎn)均在同一個(gè)平面內(nèi),如圖所示),取直角的兩邊為坐標(biāo)軸,試證明:
(1)OM⊥AB;
(2)三條直線OM,BP,AR通過同一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過O極點(diǎn)引直線交圓ρ2+r2-2rρcosθ-a2=0(r>a>0)于P,Q兩點(diǎn),在此直線上取一點(diǎn)R,使得
2
OR
=
1
OP
+
1
OQ
,求R點(diǎn)的軌跡的極坐標(biāo)方程(r,a是常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β、γ是三個(gè)平面,且α∩β=a,α∩γ=b,β∩γ=c,且a∩b=O,求證:a、b、c三線共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方形ABCD、ABEF的邊長(zhǎng)都是1,而且平面ABCD、ABEF互相垂直.點(diǎn)M在AC上移動(dòng),點(diǎn)N在BF上移動(dòng),若CM=BN=a(0<a<
2

(1)求MN的長(zhǎng);
(2)a為何值時(shí),MN的長(zhǎng)最。坎⑶蟪鲎钚≈担
(3)當(dāng)MN的長(zhǎng)最小時(shí),求面MNA與面MNB所成的二面角α的余弦值.(用空間向量方法解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=3,其前n項(xiàng)和為Sn,且當(dāng)n≥2時(shí),
1
Sn
=
1
an
-
1
an+1

(1)求證:數(shù)列數(shù)列{Sn}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)另bn=
an
(
an
3
+1)(
an+1
3
+1)
,記數(shù)列的前n項(xiàng)的和為Tn,試證明:Tn
7
8

查看答案和解析>>

同步練習(xí)冊(cè)答案