9.若函數(shù)y=sinx+(a+2)cosx是奇函數(shù),則a=-2.

分析 由奇函數(shù)的定義便有,sin(-x)+(a+2)cos(-x)=-[sinx+(a+2)cosx],從而便得到(a+2)cosx=-(a+2)cosx,這樣便得出a+2=0,a=-2.

解答 解:根據(jù)奇函數(shù)的定義:sin(-x)+(a+2)cos(-x)=-sinx+(a+2)cosx=-[sinx+(a+2)cosx];
∴(a+2)cosx=-(a+2)cosx;
∴a+2=-(a+2);
∴a=-2.
故答案為:-2.

點評 考查奇函數(shù)的定義:f(-x)=-f(x),以及正余弦函數(shù)的誘導(dǎo)公式,對于式子(a+2)cosx=-(a+2)cosx恒成立時,知道a+2=-(a+2).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義函數(shù)y=f(x),x∈I,若存在常數(shù)M,對于任意x1∈I,存在唯一的x2∈I,使得$\frac{f{(x}_{1})+f{(x}_{2})}{2}$=M,則稱函數(shù)f(x)在I上的“均值”為M,已知f(x)=x2+log2x,x∈[1,4],則函數(shù)f(x)=x2+log2x,x∈[1,4]上的“均值”為$\frac{19}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow$|=5,向量$\overrightarrow{c}$-$\overrightarrow{a}$,$\overrightarrow{c}$-$\overrightarrow$的夾角為$\frac{2π}{3}$,|$\overrightarrow{c}$-$\overrightarrow{a}$|=2$\sqrt{3}$,則向量$\overrightarrow{a}$•$\overrightarrow{c}$的最大值為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-2)x,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$滿足對任意的實數(shù)x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則實數(shù)a的取值范圍為( 。
A.(-∞,2)B.(-∞,$\frac{13}{8}$]C.(-∞,2]D.[$\frac{13}{8}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知直線L經(jīng)過點P(0,-1),且與直線x-2y+1=0平行,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在拋物線y=x2上取不同的兩點An(an,an2),An+1(an+1,an+12),若AnAn+1的斜率為2-n(n∈N*).
(1)求數(shù)列{an}(n∈N*)的前2n項和;
(2)是否存在a1,使得數(shù)列{an}(n∈N*)是等差或等比數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-ax(a∈R)
(1)若不等式f(x)>a-3的解集為R,求實數(shù)a的取值范圍;
(2)設(shè)x>y>0,且xy=2,若不等式f(x)+f(y)+2ay≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,三個內(nèi)角A,B,C所對的邊長分別是a,b,c,且$\overrightarrow{AB}•\overrightarrow{AC}$=6,$\overrightarrow{AB}•\overrightarrow{BC}$=2.求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.非零向量$\overrightarrow{a}$,$\overrightarrow$,向量$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow a$的夾角為$\frac{π}{6}$,向量$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow b$的夾角為$\frac{π}{4}$則$\frac{|\overrightarrow a|}{|\overrightarrow b|}$等于$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案