【題目】如圖,四棱錐P﹣ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分別是棱AD,PC的中點
(1)求證:EF⊥平面PBC
(2)若直線PC與平面ABCD所成角為 ,點P在AB上的射影O在靠近點B的一側(cè),求二面角P﹣EF﹣A的余弦值.
【答案】
(1)證明:取PB的中點G,連接AQ,F(xiàn)G,
∵PA=AB,∴AG⊥PB,
∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,BC⊥AB,
∴BC⊥平面PAB,
∴BC⊥AG,
∵PB∩BC=B,
∴AG⊥平面PBC
∵E、F分別是棱AD,PC的中點,
∴FG∥AE,F(xiàn)G=AE,
∴四邊形AEFG是平行四邊形,
∴EF∥AG,
∴EF⊥平面PBC
(2)解:作PO⊥AB=0,則PO⊥平面ABCD,
連接OC,則∠PCO= ,
∴PO=OC,設(shè)AO=x,則 = ,解得x=2,
以O(shè)為原點,建立空間直角坐標(biāo)系,
則P(0,0, ),A(﹣2,0,0),C(1,2,0),
D(﹣2,2,0),E(﹣2,1,0),F(xiàn)( ),
,,
設(shè)平面PEF的法向量 ,
則 ,取x=1,得 =(1,﹣3,﹣ ),
設(shè)平面AEF的法向量 ,
∵ ,
∴ ,取a=1,得 ,
設(shè)二面角P﹣EF﹣A的平面角為α,
則cosα=|coss< >|=| |= .
∴二面角P﹣EF﹣A的余弦值為 .
【解析】(1)取PB的中點G,連接AQ,F(xiàn)G,則AG⊥PB,BC⊥AB,從而BC⊥平面PAB,BC⊥AG,由此能證明EF⊥平面PBC.(2)作PO⊥AB=0,連接OC,以O(shè)為原點,建立空間直角坐標(biāo)系,利用向量法能求出二面角P﹣EF﹣A的余弦值.
【考點精析】根據(jù)題目的已知條件,利用直線與平面垂直的判定和空間角的異面直線所成的角的相關(guān)知識可以得到問題的答案,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1中,點M,N分別在線段AB1、BC1上,且AM=BN.以下結(jié)論:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,⑤MN與 A1C1成30°.其中有可能成立的結(jié)論的個數(shù)為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線x2﹣ =1的左、右焦點分別為F1、F2 , 若點P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.展館附近一家川菜特色餐廳為了研究參會人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會前查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):
(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補(bǔ)充原材料多少袋?
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的函數(shù),滿足f(x)=﹣f(﹣x),且當(dāng)x<0時,f(x)=x ,則f(9)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費用是每日92元,根據(jù)經(jīng)驗,若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金x元只取整數(shù),用f(x)元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入﹣管理費用)
(1)求函數(shù)f(x)的解析式及其定義域;
(2)當(dāng)租金定為多少時,才能使一天的純收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PA垂直于圓O所在的平面,△ABC內(nèi)接于圓O,且AB為圓O的直徑,點M為線段PB的中點.現(xiàn)有以下命題:①BC⊥PC;②OM∥平面APC;③點B到平面PAC的距離等于線段BC的長.其中真命題的個數(shù)為( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲,乙,丙,丁四位同學(xué)課余參加巴蜀愛心社和巴蜀文學(xué)風(fēng)的活動,每人參加且只能參加一個社團(tuán)的活動,并且參加每個社團(tuán)都是等可能的.
(1)求巴蜀愛心社和巴蜀文學(xué)風(fēng)都至少有1人參加的概率;
(2)求甲,乙在同一個社團(tuán),丙,丁不在同一個社團(tuán)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com