【題目】已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n ,n 2),這些球除顏色外全部相同。現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,……,m+n的抽屜內(nèi),其中第k次取球放入編號(hào)為k的抽屜(k=1,2,3,……,m+n).

(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;

(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(x)是x的數(shù)學(xué)期望,證明

【答案】(1)(2)見(jiàn)解析

【解析】試題分析:(1)根據(jù)條件先確定總事件數(shù)為,而編號(hào)為2的抽屜內(nèi)放的是黑球的事件數(shù)為,最后根據(jù)古典概型的概率公式即可求概率;(2)先確定最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù)為,所對(duì)應(yīng)的概率,再根據(jù)數(shù)學(xué)期望公式得,利用性質(zhì),進(jìn)行放縮變形: ,最后利用組合數(shù)性質(zhì)化簡(jiǎn),可得結(jié)論.

試題解析:解:(1)編號(hào)為2的抽屜內(nèi)放的是黑球的概率為: .

(2)隨機(jī)變量X的概率分布為:

X

P

隨機(jī)變量X的期望為:

.

所以

.

點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:

(1)“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;

(2)“探求概率”,即利用排列組合、枚舉法、概率公式(常見(jiàn)的有古典概型公式、幾何概型公式、互斥事件的概率和公式、獨(dú)立事件的概率積公式,以及對(duì)立事件的概率公式等),求出隨機(jī)變量取每個(gè)值時(shí)的概率;

(3)“寫(xiě)分布列”,即按規(guī)范形式寫(xiě)出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;

(4)“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值,對(duì)于有些實(shí)際問(wèn)題中的隨機(jī)變量,如果能夠斷定它服從某常見(jiàn)的典型分布(如二項(xiàng)分布),則此隨機(jī)變量的期望可直接利用這種典型分布的期望公式()求得.因此,應(yīng)熟記常見(jiàn)的典型分布的期望公式,可加快解題速度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n ,n 2),這些球除顏色外全部相同,F(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,……,m+n的抽屜內(nèi),其中第k次取球放入編號(hào)為k的抽屜(k=1,2,3,……,m+n).

(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;

(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(x)是x的數(shù)學(xué)期望,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是(φ為參數(shù))和(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求圓C1和C2的極坐標(biāo)方程;

(2)射線(xiàn)OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的兩個(gè)焦點(diǎn),是橢圓上一點(diǎn),當(dāng)時(shí),有.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過(guò)橢圓右焦點(diǎn)的動(dòng)直線(xiàn)與橢圓交于兩點(diǎn),試問(wèn)在鈾上是否存在與不重合的定點(diǎn),使得恒成立?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線(xiàn)上,點(diǎn)是拋物線(xiàn)的焦點(diǎn),線(xiàn)段的中點(diǎn)為.

(1)若點(diǎn)的坐標(biāo)為,且的垂心,求直線(xiàn)的方程;

(2)若點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22121,3553等.顯然2位“回文數(shù)”共9個(gè):1122,33,…,99.現(xiàn)從9個(gè)不同2位“回文數(shù)”中任取1個(gè)乘以4,其結(jié)果記為X;從9個(gè)不同2位“回文數(shù)”中任取2個(gè)相加,其結(jié)果記為Y

1)求X為“回文數(shù)”的概率;

2)設(shè)隨機(jī)變量表示X,Y兩數(shù)中“回文數(shù)”的個(gè)數(shù),求的概率分布和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個(gè),分別編號(hào)為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個(gè)球.

(Ⅰ)若兩個(gè)球顏色不同,求不同取法的種數(shù);

(Ⅱ)在(1)的條件下,記兩球編號(hào)的差的絕對(duì)值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知變量、之間的線(xiàn)性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說(shuō)法錯(cuò)誤的是( )

A.可以預(yù)測(cè),當(dāng)時(shí),B.

C.變量之間呈負(fù)相關(guān)關(guān)系D.該回歸直線(xiàn)必過(guò)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為α為參數(shù)),曲線(xiàn)C2的參數(shù)方程為β為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線(xiàn)C1C2的極坐標(biāo)方程;

2)若點(diǎn)A在曲線(xiàn)C1上,點(diǎn)B在曲線(xiàn)C2上,且∠AOB,求|OA||OB|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案