【題目】為拋物線的準線上一點,FC 的焦點,點PC上且滿足,若當m取得最小值時,點P恰好在以原點為中心,F為焦點的雙曲線上,則該雙曲線的離心率為

A. B. 3 C. D.

【答案】B

【解析】分析:由題意首先確定拋物線的方程,然后結合幾何關系將原問題轉化為直線與拋物線相切的問題,最后求解雙曲線的離心率即可.

詳解:為拋物線的準線上一點,

,解得p=6;

∴拋物線的標準方程為y2=12x,焦點為F(3,0),準線方程為x=3;

過點P作準線的垂線,垂足為N,則由拋物線的定義可得|PN|=|PF|,

|PF|=m|PA|,|PN|=m|PA|,;

如圖所示,

PA的傾斜角為,則,

m取得最小值時,最小,此時直線PA與拋物線相切;

設直線PA的方程為,代入y2=12x,

可得.

解得(不合題意,舍去),

可得切點;

由題意可得雙曲線的焦點為(3,0),(3,0),

∴雙曲線的實軸長為.

∴雙曲線的離心率為.

本題選擇B選項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=x+有如下性質:如果常數(shù)t0,那么該函數(shù)在(0]上是減函數(shù),在[,+∞)上是增函數(shù).

1)已知(x=,x[0,1]利用上述性質,求函數(shù)fx)的值域;

2)對于(1)中的函數(shù)fx)和函數(shù)gx=-x+2a.若對任意x1[01],總存在x2[01],使得gx2=fx1)成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)則滿足的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCD-A1B1C1D1中,求證:

1AB∥平面A1B1C

2)平面ABB1A1⊥平面A1BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知長方形ABCD,AD=2CD=4,MN分別為AD、BC的中點,將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD

1)求證:直線CM⊥面DFN;

2)求點C到平面FDM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若用“五點法”在給定的坐標系中,畫出函數(shù)[0,π]上的圖象.

(2)若偶函數(shù),求

(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標不變,得到函數(shù)的圖象,求的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南宋時期著名的數(shù)學家秦九韶在其著作《數(shù)書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學水平,其求法是:以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.若把以上這段文字寫成公式,即,其中a、bc分別為內(nèi)角A、B、C的對邊.,,則面積S的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l經(jīng)過直線2x+y-5=0x-2y=0的交點P

1)若直線l平行于直線l14x-y+1=0,求l的方程;

2)若直線l垂直于直線l14x-y+1=0,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)2017年的純利潤為500萬元,因設備老化等原因,企業(yè)的生產(chǎn)能力逐年下降,若不能進行技術改造,預測從2018年起每年比上一年純利潤減少20萬元,2018年初該企業(yè)一次性投入資金600萬元進行技術改造,預測在未扣除技術改造資金的情況下,第年(以2018年為第一年)的利潤為萬元(為正整數(shù)).

(1)設從今年起的前年,若該企業(yè)不進行技術改造的累計純利潤為萬元,進行技術改造后的累計純利潤為萬元(須扣除技術改造資金),求,的表達式;

(2)依上述預測,從2018年起該企業(yè)至少經(jīng)過多少年,進行技術改造后的累計利潤超過不進行技術改造的累計純利潤?

查看答案和解析>>

同步練習冊答案