【題目】已知四邊形ABCD外切于,△ACB的內(nèi)切圓與邊AB、BC的切點(diǎn)分別為P、Q,,△ACD的內(nèi)切圓與邊CD、DA的切點(diǎn)分別為R、S. 求證:三條直線PQ、RS、AC共點(diǎn)或平行.

【答案】見(jiàn)解析

【解析】

、與AC的切點(diǎn)分別為、、分別是△ACB、△ACD的內(nèi)切圓知

又由四邊形ABCD外切于知AB+AD=CB+CD.從而,

這表明,點(diǎn)M與重合.

PQ∥AC,易知A、C兩點(diǎn)關(guān)于直線BD對(duì)稱,則RS∥AC.

于是,PQ、RS、AC互相平行.

PQAC,則易知RSAC.

如圖,記直線PQ、RS分別與直線AC交于點(diǎn)N、

對(duì)△ACB和截線PQN應(yīng)用梅涅勞斯定理得

結(jié)合BP=BQ,得 同理,

這表明,點(diǎn)N與重合,即PQ、RS、AC三線共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年高考數(shù)學(xué)的全國(guó)Ⅲ卷中,文科和理科的選做題題目完全相同,第22題考查選修4-4:極坐標(biāo)和參數(shù)方程;第23題考查選修4-5:不等式選講.某校高三質(zhì)量檢測(cè)的命題采用了全國(guó)Ⅲ卷的形式,在測(cè)試結(jié)束后,該校數(shù)學(xué)組教師對(duì)該校全體高三學(xué)生的選做題得分情況進(jìn)行了統(tǒng)計(jì),得到兩題得分的列聯(lián)表如下(已知每名學(xué)生只做了一道題):

選做22

選做23

合計(jì)

文科人數(shù)

50

60

理科人數(shù)

40

總計(jì)

400

1)完善列聯(lián)表中的數(shù)據(jù),判斷能否有的把握認(rèn)為“選做題的選擇”與“文、理科的科類”有關(guān);

2)經(jīng)統(tǒng)計(jì),第23題得分為0的學(xué)生中,理科生占理科總?cè)藬?shù)的,文科生占文科總?cè)藬?shù)的,在按分層抽樣的方法在第23題得分為0的學(xué)生中隨機(jī)抽取6名進(jìn)行單獨(dú)輔導(dǎo),并在輔導(dǎo)后隨機(jī)抽取2名學(xué)生進(jìn)行測(cè)試,求被抽中進(jìn)行測(cè)試的2名學(xué)生均為理科生的概率.

附:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)。

(1)求的單調(diào)區(qū)間;

(2)討論零點(diǎn)的個(gè)數(shù);

(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個(gè)游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來(lái)很神奇,其實(shí)原理是十分簡(jiǎn)單的,要學(xué)會(huì)盲擰也是很容易的.為了解某市盲擰魔方愛(ài)好者的水平狀況,某興趣小組在全市范圍內(nèi)隨機(jī)抽取了名魔方愛(ài)好者進(jìn)行調(diào)查,得到的情況如表所示:

用時(shí)(秒)

男性人數(shù)

15

22

14

9

女性人數(shù)

5

11

17

7

附:,.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

1)將用時(shí)低于秒的稱為“熟練盲擰者”,不低于秒的稱為“非熟練盲擰者”.請(qǐng)根據(jù)調(diào)查數(shù)據(jù)完成以下列聯(lián)表,并判斷是否有的把握認(rèn)為是否為“熟練盲擰者”與性別有關(guān)?

熟練盲擰者

非熟練盲擰者

男性

女性

2)以這名盲擰魔方愛(ài)好者的用時(shí)不超過(guò)秒的頻率,代替全市所有盲擰魔方愛(ài)好者的用時(shí)不超過(guò)秒的概率,每位盲擰魔方愛(ài)好者用時(shí)是否超過(guò)秒相互獨(dú)立.那么在該興趣小組在全市范圍內(nèi)再次隨機(jī)抽取名愛(ài)好者進(jìn)行測(cè)試,其中用時(shí)不超過(guò)秒的人數(shù)最有可能(即概率最大)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求所有正整數(shù),使得給定序列,中的每一項(xiàng)都是平方數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)線性回歸分析的四個(gè)命題:

①線性回歸直線必過(guò)樣本數(shù)據(jù)的中心點(diǎn)();

②回歸直線就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線;

③當(dāng)相關(guān)性系數(shù)時(shí),兩個(gè)變量正相關(guān);

④如果兩個(gè)變量的相關(guān)性越強(qiáng),則相關(guān)性系數(shù)就越接近于

其中真命題的個(gè)數(shù)為( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若對(duì)任意,恒成立,求的取值范圍;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.小華同學(xué)利用劉徽的“割圓術(shù)”思想在半徑為1的圓內(nèi)作正邊形求其面積,如圖是其設(shè)計(jì)的一個(gè)程序框圖,則框圖中應(yīng)填入、輸出的值分別為( )

(參考數(shù)據(jù):

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系的極坐標(biāo)方程為,直線l的參數(shù)方程為,(其中為參數(shù))直線l與交于A,B兩個(gè)不同的點(diǎn).

求傾斜角的取值范圍;

求線段AB中點(diǎn)P的軌跡的參數(shù)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案