球直徑為d,當其內(nèi)接正四棱柱體積最大時的高為
 
考點:球的體積和表面積,球內(nèi)接多面體
專題:計算題,空間位置關(guān)系與距離
分析:設(shè)該棱柱的高為h,底面邊長為a,利用球直徑為d,故a2+a2+h2=d2,利用基本不等式,即可得出結(jié)論.
解答: 解:設(shè)該棱柱的高為h,底面邊長為a,則V=a2h
∵球直徑為d,
∴a2+a2+h2=d23
3a4h2

∴V≤
3
d3
9
,
當且僅當h=a=
3
3
d
時,V取得最大值
3
d3
9

故答案為:
3
3
d
點評:本題考查球與正四棱柱的關(guān)系,幾何體體積的求法,考查空間想象能力與計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知 AB=2
3
,AC=4,且△ABC的面積S=6,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由經(jīng)驗得知,在某商場付款處排隊等候付款的人數(shù)及其概率如表:
排隊人數(shù)012345人以上
概    率0.10.160.30.30.10.04
則排隊人數(shù)為2或3人的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x),對任意實數(shù)x都有f(x+2)=f(x),當x∈[0,1]時,f(x)=x2,若在區(qū)間[-1,3]內(nèi),函數(shù)y=f(x)與函數(shù)y=kx+k的圖象恰有4個交點,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y之間的一組數(shù)據(jù)如下:
x0123
y10764
則其回歸方程
y
=bx+a表示的直線必經(jīng)過點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=xsinx+cosx,則f(-3),f(
π
2
),f(2)的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(-1,3),
b
(x,-1),且
a
b
,則x等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2x+λ•2-x是R上的奇函數(shù),則λ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3的所有切線中,滿足斜率等于1的切線有(  )
A、1條B、2條
C、多于兩條D、以上都不對

查看答案和解析>>

同步練習冊答案