【題目】在平面直角坐標(biāo)系xOy中,已知雙曲線

1)過(guò)的左頂點(diǎn)引的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;

2)設(shè)斜率為1的直線lP,Q兩點(diǎn),若l與圓相切,求證:;

3)設(shè)橢圓,若M,N分別是上的動(dòng)點(diǎn),且,求證:O到直線MN的距離是定值.

【答案】1;(2)見(jiàn)解析;(3)見(jiàn)解析

【解析】

1)根據(jù)題意,寫(xiě)出雙曲線的左頂點(diǎn),求出直線的方程,聯(lián)立求得三角形頂點(diǎn)坐標(biāo),之后利用三角形的面積公式求得結(jié)果.

2)設(shè)直線的方程為,通過(guò)直線與已知圓相切,得到,通過(guò)求解.證明.

3)當(dāng)直線垂直軸時(shí),直接求出到直線的距離為.當(dāng)直線不垂直軸時(shí),設(shè)直線的方程為:,(顯然),推出直線的方程為,求出,,設(shè)到直線的距離為,通過(guò),求出.推出到直線的距離是定值.

1)根據(jù)題意可得的左頂點(diǎn)為

設(shè)直線方程為,

與另一條漸近線聯(lián)立求得交點(diǎn)坐標(biāo)為

所以對(duì)應(yīng)三角形的面積為;

2)設(shè)直線的方程是,因直線與已知圓相切,

,即,

,

設(shè),,則,

,

;

3)當(dāng)直線ON垂直于x軸時(shí),,

O到直線MN的距離為

當(dāng)直線不垂直于軸時(shí),

設(shè)直線的方程為(顯然),

則直線的方程為.

與橢圓方程聯(lián)立,

,所以.

同理.

設(shè)O到直線MN的距離為d

則由,

綜上,O到直線MN的距離是定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面上的一列點(diǎn),簡(jiǎn)記為.若由構(gòu)成的數(shù)列滿足,其中為方向與軸正方向相同的單位向量,則稱點(diǎn)列.

1)判斷,是否為點(diǎn)列,并說(shuō)明理由;

2)若點(diǎn)列,且點(diǎn)在點(diǎn)的右上方.任取其中連續(xù)三點(diǎn),判斷的形狀(銳角三角形、直角三角形、鈍角三角形),并予以證明;

3)若點(diǎn)列,正整數(shù),滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年2月份,我國(guó)武漢地區(qū)爆發(fā)了新冠肺炎疫情,為了預(yù)防疫情蔓延,全國(guó)各大醫(yī)藥廠商紛紛加緊生產(chǎn)口罩,某醫(yī)療器械生產(chǎn)工廠為了解目前的生產(chǎn)力,統(tǒng)計(jì)了每個(gè)工人每小時(shí)生產(chǎn)的口罩?jǐn)?shù)量(單位:箱),得到如圖所示的頻率分布直方圖,其中每個(gè)工人每小時(shí)的產(chǎn)量均落在[10,70]內(nèi),數(shù)據(jù)分組為[10,20)、[20,30)、[30,40)、[40,50)、[50,60)、,已知前三組的頻率成等差數(shù)列,第三組、第四組、第五組的頻率成等比數(shù)列,最后一組的頻率為

1)求實(shí)數(shù)a的值;

2)在最后三組中采用分層抽樣的方法隨機(jī)抽取了6人,現(xiàn)從這6人中隨機(jī)抽出兩人對(duì)其它小組的工人進(jìn)行生產(chǎn)指導(dǎo),求這兩人來(lái)自同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對(duì)稱軸為軸,其準(zhǔn)線為.

1)求拋物線C的方程;

2)設(shè)直線,對(duì)任意的拋物線C上都存在四個(gè)點(diǎn)到直線l的距離為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、BC是橢圓W上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).

(I)當(dāng)點(diǎn)BW的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積.

(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,為棱上的點(diǎn),且

1)求證:平面;

2)求二面角的余弦值;

3)設(shè)為棱上的點(diǎn)(不與,重合),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】商家通常依據(jù)樂(lè)觀系數(shù)準(zhǔn)則確定商品銷售價(jià)格,及根據(jù)商品的最低銷售限價(jià)a,最高銷售限價(jià)bba)以及常數(shù)x0x1)確定實(shí)際銷售價(jià)格c=a+xb﹣a),這里,x被稱為樂(lè)觀系數(shù).

經(jīng)驗(yàn)表明,最佳樂(lè)觀系數(shù)x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中項(xiàng),據(jù)此可得,最佳樂(lè)觀系數(shù)x的值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的最大值為A,若存在實(shí)數(shù)使得對(duì)任意實(shí)數(shù)總有成立,則的最小值為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某疫苗進(jìn)行安全性臨床試驗(yàn).該疫苗安全性的一個(gè)重要指標(biāo)是:注射疫苗后人體血液中的高鐵血紅蛋白(MetHb)的含量(以下簡(jiǎn)稱為M含量)不超過(guò)1%,則為陰性,認(rèn)為受試者沒(méi)有出現(xiàn)高鐵血紅蛋白血癥(簡(jiǎn)稱血癥);若M含量超過(guò)1%,則為陽(yáng)性,認(rèn)為受試者出現(xiàn)血癥.若一批受試者的M含量平均數(shù)不超過(guò)0.65%,且出現(xiàn)血癥的被測(cè)試者的比例不超過(guò)5%,則認(rèn)為該疫苗在M含量指標(biāo)上是安全的;否則為不安全”.現(xiàn)有男、女志愿者各200名接受了該疫苗注射,按照性別分層,隨機(jī)抽取50名志愿者進(jìn)行M含量的檢測(cè),其中女性志愿者被檢測(cè)出陽(yáng)性的恰好1.經(jīng)數(shù)據(jù)整理,制得頻率分布直方圖如下.(注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.

1)請(qǐng)說(shuō)明該疫苗在M含量指標(biāo)上的安全性;

2)請(qǐng)利用樣本估計(jì)總體的思想,完成這400名志愿者的列聯(lián)表,并判斷是否有超過(guò)99%的把握認(rèn)為,注射疫苗后,高鐵血紅蛋白血癥與性別有關(guān)?

陽(yáng)性

陰性

附:.

查看答案和解析>>

同步練習(xí)冊(cè)答案