【題目】要得到函數(shù)y=3sin(2x+ )圖象,只需把函數(shù)y=3sin2x圖象(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

【答案】C
【解析】解:把函數(shù)y=3sin2x圖象向左平移 個單位,可得y=3sin2(x+ )=3sin(2x+ )的圖象,

故選:C.

【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1(﹣1,0),F(xiàn)2(1,0)是橢圓C1與雙曲線C2共同的焦點,橢圓的一個短軸端點為B,直線F1B與雙曲線的一條漸近線平行,橢圓C1與雙曲線C2的離心率分別為e1 , e2 , 則e1+e2取值范圍為(
A.[2,+∞)
B.[4,+∞)
C.(4,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與BDEF均為菱形,設(shè)AC與BD相交于點O,若∠DAB=∠DBF=60°,且FA=FC.

(1)求證:FC∥平面EAD;
(2)求直線AF與平面BCF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:方程x2+2mx+1=0有兩個不相等的負(fù)根,命題q:x∈R,x2+2(m﹣2)x﹣3m+10≥0恒成立.
(1)若命題p、q均為真命題,求m的取值范圍;
(2)若命題p∧q為假,命題p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù) (a、b、c是常數(shù))是奇函數(shù),且滿足 , (Ⅰ)求a、b、c的值;
(Ⅱ)試判斷函數(shù)f(x)在區(qū)間 上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技研究所對一批新研發(fā)的產(chǎn)品長度進(jìn)行檢測(單位:mm),如圖是檢測結(jié)果的頻率分布直方圖,據(jù)此估計這批產(chǎn)品的中位數(shù)為(

A.20
B.22.5
C.22.75
D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C對邊的邊長分別為a,b,c,給出下列四個結(jié)論: ①以 為邊長的三角形一定存在;
②以 為邊長的三角形一定存在;
③以a2 , b2 , c2為邊長的三角形一定存在;
④以 為邊長的三角形一定存在.
那么,正確結(jié)論的個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)OABC是四面體,G1是△ABC的重心,G是OG1上一點,且OG=3GG1 , 若 =x +y +z ,則(x,y,z)為(
A.( , ,
B.( , ,
C.( , ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案