【題目】某工廠過去在生產(chǎn)過程中將污水直接排放到河流中對沿河環(huán)境造成了一定的污染,根據(jù)環(huán)保部門對該廠過去10年的監(jiān)測數(shù)據(jù),統(tǒng)計(jì)出了其每年污水排放量(單位:噸)的頻率分布表:

污水排放量

頻率

0.1

0.3

0.4

0.2

將污水排放量落入各組的頻率作為概率,并假設(shè)每年該廠污水排放量相互獨(dú)立.

1)若不加以治理,根據(jù)上表中的數(shù)據(jù),計(jì)算未來3年中至少有2年污水排放量不小于200噸的概率;

2)根據(jù)環(huán)保部門的評估,該廠當(dāng)年污水排放量時(shí),對沿河環(huán)境及經(jīng)濟(jì)造成的損失為5萬元;當(dāng)年污水排放量時(shí),對沿河環(huán)境及經(jīng)濟(jì)造成的損失為10萬元;當(dāng)年污水排放量時(shí),對沿河環(huán)境及經(jīng)濟(jì)造成的損失為20萬元;當(dāng)年污水排放量時(shí),對沿河環(huán)境及經(jīng)濟(jì)造成的損失為50萬元.為了保護(hù)環(huán)境,減少損失,該廠現(xiàn)有兩種應(yīng)對方案:

方案1:若該廠不采取治污措施,則需全部賠償對沿河環(huán)境及經(jīng)濟(jì)造成的損失;

方案2:若該廠采購治污設(shè)備對所有產(chǎn)生的污水凈化達(dá)標(biāo)后再排放,則不需賠償,采購設(shè)備的費(fèi)用為10萬元,每年設(shè)備維護(hù)等費(fèi)用為15萬元,該設(shè)備使用10年需重新更換.在接下來的10年里,試比較上述2種方案哪種能為該廠節(jié)約資金,并說明理由.

【答案】12)采取方案2能為該廠節(jié)約資金;詳見解析

【解析】

1)根據(jù)表格可得排放量不小于200噸的概率,則未來3年中至少有2年污水排放量不小于200噸的概率,由獨(dú)立重復(fù)試驗(yàn)概率計(jì)算方法即可求解.

2)若不經(jīng)過治理,可得賠償損失的分布列,由分布列求得賠償?shù)臄?shù)學(xué)期望,即可求得10年共需賠償?shù)慕痤~;若采取方案2,易得10年內(nèi)需要投入的費(fèi)用,比較即可得解.

1)由已知得,該廠1年污水排放量不小于200噸的概率為

設(shè)在未來3年里,該廠污水排放量年數(shù)為,則,

,

所以未來3年中至少有2年污水排放量不小于200噸的概率為.

2)若采取方案1,即不采取治理措施,設(shè)每年需要賠償?shù)膿p失為萬元,則的分布列為

5

10

20

50

0.1

0.3

0.4

0.2

每年需要賠償?shù)膿p失的期望為,

所以10年共需賠償損失215萬元.

若采取方案2,則10年需要投入的費(fèi)用為萬元,

所以采取方案2能為該廠節(jié)約資金.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2010-2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對光纖產(chǎn)品的需求,以及個(gè)人計(jì)算機(jī)及智能手機(jī)的下一代規(guī)格升級,電動汽車及物聯(lián)網(wǎng)等新機(jī)遇,連接器行業(yè)增長呈現(xiàn)加速狀態(tài).根據(jù)該折線圖,下列結(jié)論正確的個(gè)數(shù)為( )

①每年市場規(guī)模量逐年增加;

②增長最快的一年為2013~2014;

③這8年的增長率約為40%;

④2014年至2018年每年的市場規(guī)模相對于2010年至2014年每年的市場規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn)

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸,軸分別交于,,線段的中垂線與拋物線有兩個(gè)不同的交點(diǎn)

1)求的取值范圍;

2)是否存在,使得,,四點(diǎn)共圓,若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓1(a>b>0)的左右焦點(diǎn)分別為F1F2,左右頂點(diǎn)分別為AB,上頂點(diǎn)為T,且△TF1F2為等邊三角形.

1)求此橢圓的離心率e;

2)若直線y=kx+m(k>0)與橢圓交與CD兩點(diǎn)(點(diǎn)Dx軸上方),且與線段F1F2及橢圓短軸分別交于點(diǎn)MN(其中MN不重合),且|CM|=|DN|.

①求k的值;

②設(shè)ADBC的斜率分別為k1,k2,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對產(chǎn)品進(jìn)行抽查檢測,現(xiàn)對某條生產(chǎn)線上隨機(jī)抽取的100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對比,并對每個(gè)產(chǎn)品進(jìn)行綜合評分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值,并求綜合評分的中位數(shù);

2)用樣本估計(jì)總體,視頻率作為概率,在該條生產(chǎn)線中隨機(jī)抽取3個(gè)產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,

1)證明:平面

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為,其范圍為,分別有五個(gè)級別:暢通;基本暢通;輕度擁堵;中度擁堵;嚴(yán)重?fù)矶?/span>.晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.

(Ⅰ)用分層抽樣的方法從交通指數(shù)在,的路段中共抽取個(gè)路段,求依次抽取的三個(gè)級別路段的個(gè)數(shù);

(Ⅱ)從(Ⅰ)中抽出的個(gè)路段中任取個(gè),求至少有個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求fx)的最小正周期和單調(diào)遞減區(qū)間;

(Ⅱ)將函數(shù)fx)的圖象向右平移個(gè)單位,得到函數(shù)gx)的圖象,求gx)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,則實(shí)數(shù)a的取值范圍是(  )

A. [e,+∞)B. [,+∞)

C. [,e2)D. [e2,+∞)

查看答案和解析>>

同步練習(xí)冊答案