【題目】某工廠過去在生產(chǎn)過程中將污水直接排放到河流中對沿河環(huán)境造成了一定的污染,根據(jù)環(huán)保部門對該廠過去10年的監(jiān)測數(shù)據(jù),統(tǒng)計(jì)出了其每年污水排放量(單位:噸)的頻率分布表:
污水排放量 | ||||
頻率 | 0.1 | 0.3 | 0.4 | 0.2 |
將污水排放量落入各組的頻率作為概率,并假設(shè)每年該廠污水排放量相互獨(dú)立.
(1)若不加以治理,根據(jù)上表中的數(shù)據(jù),計(jì)算未來3年中至少有2年污水排放量不小于200噸的概率;
(2)根據(jù)環(huán)保部門的評估,該廠當(dāng)年污水排放量時(shí),對沿河環(huán)境及經(jīng)濟(jì)造成的損失為5萬元;當(dāng)年污水排放量時(shí),對沿河環(huán)境及經(jīng)濟(jì)造成的損失為10萬元;當(dāng)年污水排放量時(shí),對沿河環(huán)境及經(jīng)濟(jì)造成的損失為20萬元;當(dāng)年污水排放量時(shí),對沿河環(huán)境及經(jīng)濟(jì)造成的損失為50萬元.為了保護(hù)環(huán)境,減少損失,該廠現(xiàn)有兩種應(yīng)對方案:
方案1:若該廠不采取治污措施,則需全部賠償對沿河環(huán)境及經(jīng)濟(jì)造成的損失;
方案2:若該廠采購治污設(shè)備對所有產(chǎn)生的污水凈化達(dá)標(biāo)后再排放,則不需賠償,采購設(shè)備的費(fèi)用為10萬元,每年設(shè)備維護(hù)等費(fèi)用為15萬元,該設(shè)備使用10年需重新更換.在接下來的10年里,試比較上述2種方案哪種能為該廠節(jié)約資金,并說明理由.
【答案】(1)(2)采取方案2能為該廠節(jié)約資金;詳見解析
【解析】
(1)根據(jù)表格可得排放量不小于200噸的概率,則未來3年中至少有2年污水排放量不小于200噸的概率,由獨(dú)立重復(fù)試驗(yàn)概率計(jì)算方法即可求解.
(2)若不經(jīng)過治理,可得賠償損失的分布列,由分布列求得賠償?shù)臄?shù)學(xué)期望,即可求得10年共需賠償?shù)慕痤~;若采取方案2,易得10年內(nèi)需要投入的費(fèi)用,比較即可得解.
(1)由已知得,該廠1年污水排放量不小于200噸的概率為
設(shè)在未來3年里,該廠污水排放量年數(shù)為,則,
,
所以未來3年中至少有2年污水排放量不小于200噸的概率為.
(2)若采取方案1,即不采取治理措施,設(shè)每年需要賠償?shù)膿p失為萬元,則的分布列為
5 | 10 | 20 | 50 | |
0.1 | 0.3 | 0.4 | 0.2 |
每年需要賠償?shù)膿p失的期望為,
所以10年共需賠償損失215萬元.
若采取方案2,則10年需要投入的費(fèi)用為萬元,
所以采取方案2能為該廠節(jié)約資金.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2010-2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對光纖產(chǎn)品的需求,以及個(gè)人計(jì)算機(jī)及智能手機(jī)的下一代規(guī)格升級,電動汽車及物聯(lián)網(wǎng)等新機(jī)遇,連接器行業(yè)增長呈現(xiàn)加速狀態(tài).根據(jù)該折線圖,下列結(jié)論正確的個(gè)數(shù)為( )
①每年市場規(guī)模量逐年增加;
②增長最快的一年為2013~2014;
③這8年的增長率約為40%;
④2014年至2018年每年的市場規(guī)模相對于2010年至2014年每年的市場規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn)
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與軸,軸分別交于,,線段的中垂線與拋物線有兩個(gè)不同的交點(diǎn)、.
(1)求的取值范圍;
(2)是否存在,使得,,,四點(diǎn)共圓,若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓1(a>b>0)的左右焦點(diǎn)分別為F1F2,左右頂點(diǎn)分別為AB,上頂點(diǎn)為T,且△TF1F2為等邊三角形.
(1)求此橢圓的離心率e;
(2)若直線y=kx+m(k>0)與橢圓交與CD兩點(diǎn)(點(diǎn)D在x軸上方),且與線段F1F2及橢圓短軸分別交于點(diǎn)MN(其中MN不重合),且|CM|=|DN|.
①求k的值;
②設(shè)ADBC的斜率分別為k1,k2,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對產(chǎn)品進(jìn)行抽查檢測,現(xiàn)對某條生產(chǎn)線上隨機(jī)抽取的100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對比,并對每個(gè)產(chǎn)品進(jìn)行綜合評分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評分的中位數(shù);
(2)用樣本估計(jì)總體,視頻率作為概率,在該條生產(chǎn)線中隨機(jī)抽取3個(gè)產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為,其范圍為,分別有五個(gè)級別:暢通;基本暢通;輕度擁堵;中度擁堵;嚴(yán)重?fù)矶?/span>.晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.
(Ⅰ)用分層抽樣的方法從交通指數(shù)在,,的路段中共抽取個(gè)路段,求依次抽取的三個(gè)級別路段的個(gè)數(shù);
(Ⅱ)從(Ⅰ)中抽出的個(gè)路段中任取個(gè),求至少有個(gè)路段為輕度擁堵的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向右平移個(gè)單位,得到函數(shù)g(x)的圖象,求g(x)在區(qū)間上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,則實(shí)數(shù)a的取值范圍是( )
A. [e,+∞)B. [,+∞)
C. [,e2)D. [e2,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com